Solveeit Logo

Question

Question: The coefficient of x<sup>n</sup> in the expansion of \(\frac{1}{(1 - x)(1 - 2x)(1 - 3x)}\) is –...

The coefficient of xn in the expansion of 1(1x)(12x)(13x)\frac{1}{(1 - x)(1 - 2x)(1 - 3x)} is –

A

12\frac{1}{2} (2n+2 – 3n+3 + 1)

B

12\frac{1}{2} (3n+2 – 2n+3 + 1)

C

12\frac{1}{2} (2n+3 – 3n+2 + 1)

D

None of these

Answer

12\frac{1}{2} (3n+2 – 2n+3 + 1)

Explanation

Solution

We have, 1(1x)(12x)(13x)\frac{1}{(1 - x)(1 - 2x)(1 - 3x)}

= 12(1x)412x+92(13x)\frac{1}{2(1 - x)} - \frac{4}{1 - 2x} + \frac{9}{2(1 - 3x)}

[By resolving into partial fractions]

= 12\frac{1}{2} (1 – x)–1 –4 (1 – 2x)–1 + 92\frac{9}{2} (1 – 3x)–1

= 12\frac{1}{2} [1 + x + x2 + …. + xn +….] – 4 [1 + 2x + (2x)2 + ….. + (2x)n + ….] + 92\frac{9}{2} [1 + (3x) + (3x)2 + ….. + (3x)n + …..]

\ Coefficient of xn = 12\frac{1}{2} [1 – 8.2n + 9.3n]

= 12\frac{1}{2} [1 – 2n+3 + 3n+2].