Solveeit Logo

Question

Question: The coefficient of \(x^{r}\) in the expansion of \(e^{e^{x}}\) is....

The coefficient of xrx^{r} in the expansion of eexe^{e^{x}} is.

A

1r1!+2r2!+3r3!+.....\frac{1^{r}}{1!} + \frac{2^{r}}{2!} + \frac{3^{r}}{3!} + .....

B

1+11!+12!+....+1r!1 + \frac{1}{1!} + \frac{1}{2!} + .... + \frac{1}{r!}

C

1r![1r1!+2r2!+3r3!+....]\frac{1}{r!}\left\lbrack \frac{1^{r}}{1!} + \frac{2^{r}}{2!} + \frac{3^{r}}{3!} + .... \right\rbrack

D

err!\frac{e^{r}}{r!}

Answer

1r![1r1!+2r2!+3r3!+....]\frac{1}{r!}\left\lbrack \frac{1^{r}}{1!} + \frac{2^{r}}{2!} + \frac{3^{r}}{3!} + .... \right\rbrack

Explanation

Solution

Expansion of x1x+loge(1x)\frac{x}{1 - x} + \log_{e}(1 - x)

x1(x+1)+12.x21(x+1)2+13.x31(x+1)3+......=\frac{x - 1}{(x + 1)} + \frac{1}{2}.\frac{x^{2} - 1}{(x + 1)^{2}} + \frac{1}{3}.\frac{x^{3} - 1}{(x + 1)^{3}} + ......\infty =

logex\log_{e}x

loge(1+x)\log_{e}(1 + x) + ………

Hence the coefficient of

loge(1x)\log_{e}(1 - x).