Solveeit Logo

Question

Question: The coefficient of \(x^{r}\) in the expansion of \(1 + \frac{a + bx}{1!} + \frac{(a + bx)^{2}}{2!} ...

The coefficient of xrx^{r} in the expansion of

1+a+bx1!+(a+bx)22!+.....+(a+bx)nn!+.....1 + \frac{a + bx}{1!} + \frac{(a + bx)^{2}}{2!} + ..... + \frac{(a + bx)^{n}}{n!} + ..... is.

A

(a+b)rr!\frac{(a + b)^{r}}{r!}

B

brr!\frac{b^{r}}{r!}

C

eabrr!\frac{e^{a}b^{r}}{r!}

D

ea+bre^{a + b^{r}}

Answer

eabrr!\frac{e^{a}b^{r}}{r!}

Explanation

Solution

ex+1x+1\frac{e^{x} + 1}{x + 1}

The coefficient ofex+1x1\frac{e^{x} + 1}{x - 1}.