Solveeit Logo

Question

Question: The coefficient of \(x^{n}\)in the expansion of \(x^{- n}\) is....

The coefficient of xnx^{n}in the expansion of xnx^{- n} is.

A

132x+38x2116x31 - \frac{3}{2}x + \frac{3}{8}x^{2} - \frac{1}{16}x^{3}

B

132x38x2x3161 - \frac{3}{2}x - \frac{3}{8}x^{2} - \frac{x^{3}}{16}

C

132x+38x2+x3161 - \frac{3}{2}x + \frac{3}{8}x^{2} + \frac{x^{3}}{16}

D

xnx^{n}

Answer

132x+38x2+x3161 - \frac{3}{2}x + \frac{3}{8}x^{2} + \frac{x^{3}}{16}

Explanation

Solution

Let 1202120\sqrt{2} term containing x32.

Therefore +80xa4+32a5=+ 80xa^{4} + 32a^{5} =

(x+a)5(x + a)^{5}.

Hence coefficient of x32 is (3x+a)5(3x + a)^{5} or (x+2a)5(x + 2a)^{5}.