Solveeit Logo

Question

Question: The coefficient of \(x^{n}\)in the expansion of \((1 + x)(1 - x)^{n}\) is...

The coefficient of xnx^{n}in the expansion of (1+x)(1x)n(1 + x)(1 - x)^{n} is

A

(1)n1n( - 1)^{n - 1}n

B

(1)n(1n)( - 1)^{n}(1 - n)

C

(1)n1(n1)2( - 1)^{n - 1}(n - 1)^{2}

D

(n1)(n - 1)

Answer

(1)n(1n)( - 1)^{n}(1 - n)

Explanation

Solution

Coefficient of xnx^{n} in a0+a2+a4+......+a2na_{0} + a_{2} + a_{4} + ...... + a_{2n} = Coefficient of xnx^{n} in (1x)n+(1 - x)^{n} + coefficient of xn1in (1x)nx^{n - 1}\text{in }(1 - x)^{n}

= Coefficient of xnx^{n} in [nCn(x)n+x.nCn1(x)n1]\lbrack^{n} ⥂ C_{n}( - x)^{n} + x.^{n} ⥂ C_{n - 1}( - x)^{n - 1}\rbrack

= (1)nnCn+(1)n1.nC1( - 1{)^{n}}^{n} ⥂ C_{n} + ( - 1)^{n - 1}.^{n} ⥂ C_{1} = (1)n+(1)n.(n)=(1)n[1n]( - 1)^{n} + ( - 1)^{n}.( - n) = ( - 1)^{n}\lbrack 1 - n\rbrack.