Solveeit Logo

Question

Question: The coefficient of \(x^{n}\) in the expression \(\frac{5x + 6}{(2 + x)(1 - x)}\) when expanded in as...

The coefficient of xnx^{n} in the expression 5x+6(2+x)(1x)\frac{5x + 6}{(2 + x)(1 - x)} when expanded in ascending order is

A

23(1)n2n+113\frac{- 2}{3}\frac{( - 1)^{n}}{2^{n}} + \frac{11}{3}

B

23+(1)n2n113\frac{2}{3} + \frac{( - 1)^{n}}{2^{n}} - \frac{11}{3}

C

23+(1)n3112n- \frac{2}{3} + \frac{( - 1)^{n}}{3} - \frac{11}{2^{n}}

D

None of these

Answer

23(1)n2n+113\frac{- 2}{3}\frac{( - 1)^{n}}{2^{n}} + \frac{11}{3}

Explanation

Solution

5x+6(2+x)(1+x)=432+x+1131x\frac{5x + 6}{(2 + x)(1 + x)} = \frac{\frac{- 4}{3}}{2 + x} + \frac{\frac{11}{3}}{1 - x}Rewriting the denominators for expressions, we get

=432(1+x2)+1131x=23(1+x2)1+113(1x)1\frac{\frac{- 4}{3}}{2\left( 1 + \frac{x}{2} \right)} + \frac{\frac{11}{3}}{1 - x} = \frac{- 2}{3}\left( 1 + \frac{x}{2} \right)^{- 1} + \frac{11}{3}(1 - x)^{- 1}

= 23[1x2+x24x38+......+(1)nxn2n+......]+113[1+x+x2+.......+xn+.....]\frac{- 2}{3}\left\lbrack 1 - \frac{x}{2} + \frac{x^{2}}{4} - \frac{x^{3}}{8} + ...... + ( - 1)^{n}\frac{x^{n}}{2^{n}} + ...... \right\rbrack + \frac{11}{3}\lbrack 1 + x + x^{2} + ....... + x^{n} + .....\rbrackThe coefficient of xnx^{n} in the given expression is

23(1)n12n+113\frac{- 2}{3}( - 1)^{n}\frac{1}{2^{n}} + \frac{11}{3}.