Solveeit Logo

Question

Question: The coefficient of \(x^{n}\) in the expansion of \(\log_{a}(1 + x)\) is....

The coefficient of xnx^{n} in the expansion of loga(1+x)\log_{a}(1 + x) is.

A

(1)n1n\frac{( - 1)^{n - 1}}{n}

B

(1)n1nlogae\frac{( - 1)^{n - 1}}{n}\log_{a}e

C

(1)n1nlogea\frac{( - 1)^{n - 1}}{n}\log_{e}a

D

(1)nnlogae\frac{( - 1)^{n}}{n}\log_{a}e

Answer

(1)n1nlogae\frac{( - 1)^{n - 1}}{n}\log_{a}e

Explanation

Solution

We have 1r1!+2r2!+3r3!+.....\frac{1^{r}}{1!} + \frac{2^{r}}{2!} + \frac{3^{r}}{3!} + .....

1+11!+12!+....+1r!1 + \frac{1}{1!} + \frac{1}{2!} + .... + \frac{1}{r!}

Therefore coefficient of 1r![1r1!+2r2!+3r3!+....]\frac{1}{r!}\left\lbrack \frac{1^{r}}{1!} + \frac{2^{r}}{2!} + \frac{3^{r}}{3!} + .... \right\rbrackin err!\frac{e^{r}}{r!} isTn=3n2(n!)12(n!),T_{n} = \frac{3^{n}}{2(n!)} - \frac{1}{2(n!)},.