Solveeit Logo

Question

Question: The coefficient of \(x^{n}\) in the expansion of \(\left( \frac{1}{1 - x} \right)\left( \frac{1}{3 -...

The coefficient of xnx^{n} in the expansion of (11x)(13x)\left( \frac{1}{1 - x} \right)\left( \frac{1}{3 - x} \right) is

A

3n+112.3n+1\frac{3^{n + 1} - 1}{2.3^{n + 1}}

B

3n+113n+1\frac{3^{n + 1} - 1}{3^{n + 1}}

C

2(3n+113n+1)2\left( \frac{3^{n + 1} - 1}{3^{n + 1}} \right)

D

None

Answer

3n+112.3n+1\frac{3^{n + 1} - 1}{2.3^{n + 1}}

Explanation

Solution

1(1x)(3x)=(1x)1(3x)1\frac{1}{(1 - x)(3 - x)} = (1 - x)^{- 1}(3 - x)^{- 1}= 31(1x)1(1x3)13^{- 1}(1 - x)^{- 1}\left( 1 - \frac{x}{3} \right)^{- 1}

=13[1+x+x2+.....xn][1+x3+x232+.....+xn13n1+xn3n]\frac{1}{3}\lbrack 1 + x + x^{2} + .....x^{n}\rbrack\left\lbrack 1 + \frac{x}{3} + \frac{x^{2}}{3^{2}} + ..... + \frac{x^{n - 1}}{3^{n - 1}} + \frac{x^{n}}{3^{n}} \right\rbrackCoefficient of xn=13n+1+13n+13n1+.....(n+1) termsx^{n} = \frac{1}{3^{n + 1}} + \frac{1}{3^{n}} + \frac{1}{3^{n - 1}} + .....(n + 1)\text{ terms}

= 13n+1[3n+11]31=3n+112.3n+1\frac{1}{3^{n + 1}}\frac{\lbrack 3^{n + 1} - 1\rbrack}{3 - 1} = \frac{3^{n + 1} - 1}{2.3^{n + 1}}.

Trick: Put n=1,2,3......n = 1,2,3...... and find the coefficients of x,x2,x3......x,x^{2},x^{3}...... and comparing with the given option as :

Coefficient of x2x^{2} is = 133+132+131\frac{1}{3^{3}} + \frac{1}{3^{2}} + \frac{1}{3^{1}} = 133[331]31=1327\frac{1}{3^{3}}\frac{\lbrack 3^{3} - 1\rbrack}{3 - 1} = \frac{13}{27}; Which is given by option (1) 3n+112.(3n+1)=3312.33=1327\frac{3^{n + 1} - 1}{2.(3^{n + 1})} = \frac{3^{3} - 1}{2.3^{3}} = \frac{13}{27}.