Solveeit Logo

Question

Question: The Coefficient of $x^7$ in $(1-x+2x^3)^{10}$ is ______...

The Coefficient of x7x^7 in (1x+2x3)10(1-x+2x^3)^{10} is ______

Answer

120

Explanation

Solution

To find the coefficient of x7x^7 in the expansion of (1x+2x3)10(1-x+2x^3)^{10}, we use the multinomial theorem.

The general term in the expansion of (a+b+c)n(a+b+c)^n is given by: Tp,q,r=n!p!q!r!apbqcrT_{p,q,r} = \frac{n!}{p!q!r!} a^p b^q c^r where p+q+r=np+q+r=n and p,q,rp,q,r are non-negative integers.

In our case, a=1a=1, b=xb=-x, c=2x3c=2x^3, and n=10n=10. So, the general term is: Tp,q,r=10!p!q!r!(1)p(x)q(2x3)rT_{p,q,r} = \frac{10!}{p!q!r!} (1)^p (-x)^q (2x^3)^r Tp,q,r=10!p!q!r!(1)p(1)q(x)q(2)r(x3)rT_{p,q,r} = \frac{10!}{p!q!r!} (1)^p (-1)^q (x)^q (2)^r (x^3)^r Tp,q,r=10!p!q!r!(1)q(2)rxq+3rT_{p,q,r} = \frac{10!}{p!q!r!} (-1)^q (2)^r x^{q+3r}

We need the coefficient of x7x^7, so we set the exponent of xx to 7: q+3r=7q+3r = 7 Also, the sum of the powers must be equal to nn: p+q+r=10p+q+r = 10 We need to find all possible non-negative integer solutions for (p,q,r)(p,q,r) that satisfy these two equations.

Let's find the possible values for rr:

  1. Case 1: r=0r=0 Substituting r=0r=0 into q+3r=7q+3r=7: q+3(0)=7q=7q+3(0) = 7 \Rightarrow q=7. Now substitute q=7,r=0q=7, r=0 into p+q+r=10p+q+r=10: p+7+0=10p=3p+7+0 = 10 \Rightarrow p=3. So, (p,q,r)=(3,7,0)(p,q,r) = (3,7,0). The coefficient for this term is 10!3!7!0!(1)7(2)0\frac{10!}{3!7!0!} (-1)^7 (2)^0. 10×9×83×2×1×(1)×1=120×(1)=120\frac{10 \times 9 \times 8}{3 \times 2 \times 1} \times (-1) \times 1 = 120 \times (-1) = -120.

  2. Case 2: r=1r=1 Substituting r=1r=1 into q+3r=7q+3r=7: q+3(1)=7q=4q+3(1) = 7 \Rightarrow q=4. Now substitute q=4,r=1q=4, r=1 into p+q+r=10p+q+r=10: p+4+1=10p=5p+4+1 = 10 \Rightarrow p=5. So, (p,q,r)=(5,4,1)(p,q,r) = (5,4,1). The coefficient for this term is 10!5!4!1!(1)4(2)1\frac{10!}{5!4!1!} (-1)^4 (2)^1. 10×9×8×7×64×3×2×1×1×(1)×(2)=(10×3×7×2)×2=840×2=1680\frac{10 \times 9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1 \times 1} \times (1) \times (2) = (10 \times 3 \times 7 \times 2) \times 2 = 840 \times 2 = 1680.

  3. Case 3: r=2r=2 Substituting r=2r=2 into q+3r=7q+3r=7: q+3(2)=7q+6=7q=1q+3(2) = 7 \Rightarrow q+6=7 \Rightarrow q=1. Now substitute q=1,r=2q=1, r=2 into p+q+r=10p+q+r=10: p+1+2=10p=7p+1+2 = 10 \Rightarrow p=7. So, (p,q,r)=(7,1,2)(p,q,r) = (7,1,2). The coefficient for this term is 10!7!1!2!(1)1(2)2\frac{10!}{7!1!2!} (-1)^1 (2)^2. 10×9×82×1×(1)×4=360×(1)×4=1440\frac{10 \times 9 \times 8}{2 \times 1} \times (-1) \times 4 = 360 \times (-1) \times 4 = -1440.

  4. Case 4: r=3r=3 Substituting r=3r=3 into q+3r=7q+3r=7: q+3(3)=7q+9=7q=2q+3(3) = 7 \Rightarrow q+9=7 \Rightarrow q=-2. This is not possible, as qq must be a non-negative integer. So we stop here.

The total coefficient of x7x^7 is the sum of the coefficients from all valid cases: Total Coefficient = (Coefficient from Case 1) + (Coefficient from Case 2) + (Coefficient from Case 3) Total Coefficient = 120+16801440-120 + 1680 - 1440 Total Coefficient = 156014401560 - 1440 Total Coefficient = 120120