Solveeit Logo

Question

Question: The coefficient of $x^6$ in the expansion of $(1+3x-2x^3)^6$ is...

The coefficient of x6x^6 in the expansion of (1+3x2x3)6(1+3x-2x^3)^6 is

A
  • 831
B
  • 2401
C
  • 2451
D

2401

Answer
  • 2451
Explanation

Solution

The general term in the expansion of (1+3x2x3)6(1+3x-2x^3)^6 is given by the multinomial theorem: 6!n1!n2!n3!(1)n1(3x)n2(2x3)n3\frac{6!}{n_1!n_2!n_3!} (1)^{n_1} (3x)^{n_2} (-2x^3)^{n_3} where n1+n2+n3=6n_1+n_2+n_3=6. We need the coefficient of x6x^6, so n2+3n3=6n_2+3n_3=6.

Possible non-negative integer solutions for (n1,n2,n3)(n_1, n_2, n_3) are:

  1. n3=0    n2=6n_3=0 \implies n_2=6. Then n1=0n_1=0. Term: 6!0!6!0!36(2)0=729\frac{6!}{0!6!0!} 3^6 (-2)^0 = 729.
  2. n3=1    n2=3n_3=1 \implies n_2=3. Then n1=2n_1=2. Term: 6!2!3!1!33(2)1=6027(2)=3240\frac{6!}{2!3!1!} 3^3 (-2)^1 = 60 \cdot 27 \cdot (-2) = -3240.
  3. n3=2    n2=0n_3=2 \implies n_2=0. Then n1=4n_1=4. Term: 6!4!0!2!30(2)2=1514=60\frac{6!}{4!0!2!} 3^0 (-2)^2 = 15 \cdot 1 \cdot 4 = 60.

The total coefficient is the sum: 7293240+60=2451729 - 3240 + 60 = -2451.