Solveeit Logo

Question

Question: The coefficient of $x^5$ in the expansion of $(1 + x)^{21} + (1 + x)^{22} + ... + (1 + x)^{30}$ is...

The coefficient of x5x^5 in the expansion of (1+x)21+(1+x)22+...+(1+x)30(1 + x)^{21} + (1 + x)^{22} + ... + (1 + x)^{30} is

Answer

682017

Explanation

Solution

The problem asks for the coefficient of x5x^5 in the sum S=(1+x)21+(1+x)22+...+(1+x)30S = (1 + x)^{21} + (1 + x)^{22} + ... + (1 + x)^{30}.

  1. Recognize as a Geometric Progression: The given sum is a geometric progression with first term a=(1+x)21a = (1+x)^{21}, common ratio r=(1+x)r = (1+x), and number of terms N=3021+1=10N = 30 - 21 + 1 = 10.
  2. Apply GP Sum Formula: The sum S=a(rN1)r1S = \frac{a(r^N - 1)}{r - 1} becomes: S=(1+x)21((1+x)101)(1+x)1=(1+x)31(1+x)21xS = \frac{(1+x)^{21}((1+x)^{10} - 1)}{(1+x) - 1} = \frac{(1+x)^{31} - (1+x)^{21}}{x}.
  3. Find Coefficient of x5x^5: We need the coefficient of x5x^5 in (1+x)31x(1+x)21x\frac{(1+x)^{31}}{x} - \frac{(1+x)^{21}}{x}. This is equivalent to finding the coefficient of x6x^6 in (1+x)31(1+x)^{31} minus the coefficient of x6x^6 in (1+x)21(1+x)^{21}.
  4. Use Binomial Theorem: The coefficient of xkx^k in (1+x)n(1+x)^n is (nk)\binom{n}{k}. So, the coefficient of x5x^5 in SS is (316)(216)\binom{31}{6} - \binom{21}{6}.
  5. Calculate Binomial Coefficients: (316)=31×30×29×28×27×266×5×4×3×2×1=736281\binom{31}{6} = \frac{31 \times 30 \times 29 \times 28 \times 27 \times 26}{6 \times 5 \times 4 \times 3 \times 2 \times 1} = 736281. (216)=21×20×19×18×17×166×5×4×3×2×1=54264\binom{21}{6} = \frac{21 \times 20 \times 19 \times 18 \times 17 \times 16}{6 \times 5 \times 4 \times 3 \times 2 \times 1} = 54264.
  6. Subtract to find the final coefficient: 73628154264=682017736281 - 54264 = 682017.