Solveeit Logo

Question

Question: The coefficient of $x^4$ in the expansion of $\frac{(1-3x)^2}{(1-2x)}$ is...

The coefficient of x4x^4 in the expansion of (13x)2(12x)\frac{(1-3x)^2}{(1-2x)} is

A

1

B

2

C

3

D

4

Answer

4

Explanation

Solution

We write

(13x)2(12x)=16x+9x212x=(16x+9x2)n=0(2x)n.\frac{(1-3x)^2}{(1-2x)} = \frac{1-6x+9x^2}{1-2x} = (1-6x+9x^2) \cdot \sum_{n=0}^{\infty} (2x)^n.

The x4x^4 term arises from:

  • 1(24x4):1 \cdot (2^4 x^4): coefficient 24=162^4 = 16,
  • 6x(23x3):-6x \cdot (2^3 x^3): coefficient 623=48-6 \cdot 2^3 = -48,
  • 9x2(22x2):9x^2 \cdot (2^2 x^2): coefficient 922=369 \cdot 2^2 = 36.

Adding these:

1648+36=4.16 - 48 + 36 = 4.