Solveeit Logo

Question

Question: The coefficient of \(x^{25}\) in \((1 + x + x^{2} + x^{3} + x^{4})^{- 1}\) is...

The coefficient of x25x^{25} in (1+x+x2+x3+x4)1(1 + x + x^{2} + x^{3} + x^{4})^{- 1} is

A

25

B

– 25

C

1

D

– 1

Answer

1

Explanation

Solution

Coefficient of x25x^{25} in (1+x+x2+x3+x4)1(1 + x + x^{2} + x^{3} + x^{4})^{- 1}

= Coefficient of x25x^{25} in [1(1x5)1x]1\left\lbrack \frac{1(1 - x^{5})}{1 - x} \right\rbrack^{- 1}

= Coefficient of x25x^{25} in (1x5)1.(1x)(1 - x^{5})^{- 1}.(1 - x)

= Coefficient of x25x^{25} in [(1x5)1x(1x5)1(1 - x^{5})^{- 1} - x(1 - x^{5})^{- 1}]

=[1+(x5)1+(x5)2+......]x[1+(x5)1+(x5)2]+......]\lbrack 1 + (x^{5})^{1} + (x^{5})^{2} + ......\rbrack - x\lbrack 1 + (x^{5})^{1} + (x^{5})^{2}\rbrack + ......\rbrack = Coefficient of x25x^{25} in [1+x5+x10+x15+.....]\lbrack 1 + x^{5} + x^{10} + x^{15} + .....\rbrack

– Coefficient of x24x^{24} in [1+x5+x10+x15+.....]\lbrack 1 + x^{5} + x^{10} + x^{15} + .....\rbrack = 10=11 - 0 = 1.