Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The coefficient of xnx^n in the expansion of loga(1+x)\log_a (1 + x) is

A

(1)n1n\frac{(-1)^{n - 1}}{n}

B

(1)n1nlogae\frac{(-1)^{n - 1}}{n} \log_a \, e

C

(1)n1nlogea\frac{(-1)^{n - 1}}{n} \log_e \, a

D

(1)nnlogae\frac{(-1)^{n }}{n} \log_a \, e

Answer

(1)n1nlogae\frac{(-1)^{n - 1}}{n} \log_a \, e

Explanation

Solution

loga(1+x)=loge(1+x)logae\log_{a} \left(1+x\right) = \log_{e} \left(1+x\right)\log_{a}e
=logae[n=1(1)n1Xnn]= \log_{a}e \left[\displaystyle\sum_{n=1}^{\infty}\left(-1\right)^{n-1} \frac{X^{n}}{n}\right]
So, the coefficient of xnx^n in loga(1+x)\log_a ( 1 + x) is
(1)n1nlogae\frac{\left(-1\right)^{n- 1}}{n} \log_{a}e