Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The coefficient of xnx^n in the expansion of (12x+3x24x3+...1 - 2x + 3x^{2} - 4x^{3} + ... to \infty)n^{-n} is

A

(2n)!n!(n1)!\frac{\left(2n\right)!}{n!\left(n-1\right)!}

B

(2n)![(n1)!]2\frac{\left(2n\right)!}{\left[\left(n-1\right)!\right]^{2}}

C

(2n)!(n!)2\frac{\left(2n\right)!}{\left(n!\right)^{2}}

D

None of these

Answer

(2n)!(n!)2\frac{\left(2n\right)!}{\left(n!\right)^{2}}

Explanation

Solution

We have, (12x+3x24x3+...1 - 2x + 3x^{2} - 4x^{3} + ... to \infty)n^{-n} =[(1+x)2]n=(1+x)2n= \left[\left(1+x\right)^{-2}\right]^{-n} = \left(1+x\right)^{2n} \therefore Coefficient of xn=2nCn=(2n)!(n!)2x^{n} =\,^{2n}C_{n} = \frac{\left(2n\right)!}{\left(n!\right)^{2}}.