Solveeit Logo

Question

Mathematics Question on Binomial theorem

The coefficient of xnx^n in expansion of (1+x)(1x)n(1+ x)(1- x)^n is

A

(1)n1n(- 1)^{n-1} n

B

(1)n(1n)(- 1)^n (1 -n)

C

(1)n1(n1)2(-1)^{n-1} (n-1)^2

D

(n1)(n - 1 )

Answer

(1)n(1n)(- 1)^n (1 -n)

Explanation

Solution

Coeff. of xnx^{n} in (1+x)(1x)n \left(1+x\right)\left(1-x\right)^{n} = coeff of xnx^n in (1+x)(1nC1x+nC2x2...+(1)n×nCnxn)\left(1+x\right)\left(1 - {^{n}C_{1}}x + {^{n}C_{2}}x^{2} - ...+\left(-1\right)^{n} \times \, ^nC_{n} x^{n}\right) =(1)n×nCn+(1)n1nCn1=(1)n+(1)n1.n= \left(-1\right)^{n} \times \,{^{n}C_{n} }+ \left(-1\right)^{n-1}\, {^{n}C_{n-1}} = \left(-1\right)^{n} + \left(-1\right)^{n-1} .n =(1)n(1n) = \left(-1\right)^{n}\left(1-n\right)