Solveeit Logo

Question

Question: The coefficient of \(x\) in the expansion of \(\left( {1 + x} \right)\left( {1 + 2x} \right)\left(...

The coefficient of xx in the expansion of (1+x)(1+2x)(1+3x).....(1+100x)\left( {1 + x} \right)\left( {1 + 2x} \right)\left( {1 + 3x} \right).....\left( {1 + 100x} \right) is –
(A) 50505050
(B) 1010010100
(C) 51515151
(D) 49504950

Explanation

Solution

Series – An expression of the form x1+x2+x3......,{x_1} + {x_2} + {x_3}......,where x1,x2,x3......,{x_1},{x_2},{x_3}......, is a sequence of numbers is called a series. Coefficient is a numerical or constant quantity placed before and multiplying the variable in an algebraic expression.

Complete step by step answer:
(1+x)(1+2x)(1+3x).....(1+100x)\left( {1 + x} \right)\left( {1 + 2x} \right)\left( {1 + 3x} \right).....\left( {1 + 100x} \right)
We are required to find the coefficient of xx in the above expansion.
Now, first, multiply the first two terms
(1+x)(1+2x)=1+x+2x+2x2\left( {1 + x} \right)\left( {1 + 2x} \right) = 1 + x + 2x + 2{x^2}
1+x(1+2)+2x2\Rightarrow 1 + x\left( {1 + 2} \right) + 2{x^2}
Similarly, multiply the first three terms
\Rightarrow \left( {1 + x} \right)\left( {1 + 2x} \right)\left( {1 + 3x} \right) \\\ \Rightarrow \left( {1 + x + 2x + 2{x^2}} \right)\left( {1 + 3x} \right){\text{ }}\left[ {{\text{from previous multiplicaiton we can write}}\left( {1 + x} \right)\left( {1 + 2x} \right)} \right] \\\ \Rightarrow 1 + x + 2x + 2{x^2} + 3x + 3{x^2} + 6{x^2} + 6{x^3}\left[ { = \left( {1 + x + 2x + 2{x^2}} \right)} \right] \\\ \Rightarrow 1 + \left( {x + 2x + 3x} \right) + 2{x^2} + 3{x^2} + 6{x^2} + 6{x^3} \\\ \Rightarrow 1 + x\left( {1 + 2 + 3} \right) + 11{x^2} + 6{x^3} \\\
So, in the expansion of (1+x)(1+2x)(1+3x).....(1+100x)\left( {1 + x} \right)\left( {1 + 2x} \right)\left( {1 + 3x} \right).....\left( {1 + 100x} \right) coefficient of xx should be (1+2+3+.....+100)\left( {1 + 2 + 3 + ..... + 100} \right). We know that the sum of the first n'n' natural numbers is given by the expression n(n+1)2\dfrac{{n\left( {n + 1} \right)}}{2}.
\therefore The coefficient of xx in the above expression is =100(100+1)2 = \dfrac{{100\left( {100 + 1} \right)}}{2}
= \dfrac{{100 \times 101}}{2} \\\ = 5050 \\\

_\therefore The correct answer is option (A) 5050.\left( A \right){\text{ }}5050. _

Note: Here students must take care of the concept of series. Students made a mistake during the multiplication. They think that in a series there are so many terms, how will we multiply them. So, they should be aware about a series and their properties.