Solveeit Logo

Question

Question: The coefficient of x in the expansion of \[{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^...

The coefficient of x in the expansion of (1ax)1(1bx)1(1cx)1{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}} is?
A a+b+ca + b + c
B abca - b – c
C a+b+c- a + b + c
D ab+ca - b + c

Explanation

Solution

Hint: In this problem, first we need to find the binomial expansion of individual expressions. Now, collect the coefficient of xx from the binomial expansion. The binomial expansion is the algebraic expansion of powers of a binomial.

Complete step-by-step answer:
The binomial expansion of the expressions (1ax)1{\left( {1 - ax} \right)^{ - 1}}, (1bx)1{\left( {1 - bx} \right)^{ - 1}} and (1cx)1{\left( {1 - cx} \right)^{ - 1}} are shown below.

{\left( {1 - ax} \right)^{ - 1}} = 1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - ax} \right)^2} + \ldots \\\ {\left( {1 - bx} \right)^{ - 1}} = 1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - bx} \right)^2} + \ldots \\\ {\left( {1 - cx} \right)^{ - 1}} = 1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - cx} \right)^2} + \ldots \\\ \end{gathered}$$ Now, the coefficient of $$x$$ in expression $${\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}}$$ can be calculated as shown below. $$\begin{gathered} \,\,\,\,\,\,{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}} \\\ \Rightarrow \left( {1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - ax} \right)}^2} + \ldots } \right)\left( {1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - bx} \right)}^2} + \ldots } \right)\left( {1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - cx} \right)}^2} + \ldots } \right) \\\ \end{gathered}$$ Collect the coefficient of $$x$$ in the above expression. $$\begin{gathered} \,\,\,\,{\text{Coefficient of }}x = \left( a \right)\left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( b \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right)\left( c \right) \\\ \Rightarrow {\text{Coefficient of }}x = a + b + c \\\ \end{gathered}$$ Thus, the coefficient of $$x$$ is $$a + b + c$$, hence, the option (A) is the correct answer. Note: Binomial expansion is used to find the algebraic expansion of powers of a binomial. While collecting the coefficient of $$x$$, only collect those terms which are multiple of $$x$$ only.