Solveeit Logo

Question

Question: The coefficient of \[{x^7}\] in the expression \[{(1 + x)^{10}} + x{(1 + x)^9} + {x^2}{(1 + x)^8}......

The coefficient of x7{x^7} in the expression (1+x)10+x(1+x)9+x2(1+x)8.......+x10{(1 + x)^{10}} + x{(1 + x)^9} + {x^2}{(1 + x)^8}....... + {x^{10}} is
A) 210
B) 420
C) 120
D) 330

Explanation

Solution

Here we need to use both geometric progression and combination because we have to find the coefficient of that term. A term is made of a variable with the coefficient of that variable.

Complete step by step solution:
Given the series,
(1+x)10+x(1+x)9+x2(1+x)8.......+x10{(1 + x)^{10}} + x{(1 + x)^9} + {x^2}{(1 + x)^8}....... + {x^{10}}
Here common ratio r= x(1+x)9(1+x)10\dfrac{{x{{(1 + x)}^9}}}{{{{(1 + x)}^{10}}}}
rx1+x \Rightarrow \dfrac{x}{{1 + x}}
First term, a=(1+x)10a={(1 + x)^{10}}
Here there are 11 total terms.
Now sum of all these terms in G.P.is given by
S=a1rn1ra\dfrac{{1 - {r^n}}}{{1 - r}}
S=(1+x)10(1(x1+x)111x1+x)S = {(1 + x)^{10}}\left( {\dfrac{{1 - {{\left( {\dfrac{x}{{1 + x}}} \right)}^{11}}}}{{1 - \dfrac{x}{{1 + x}}}}} \right)

S=(1+x)10((1+x)11x11(1+x)111+xx1+x) S=(1+x)10((1+x)11x11(1+x)10) S=(1+x)11x11  \Rightarrow S = {(1 + x)^{10}}\left( {\dfrac{{\dfrac{{{{\left( {1 + x} \right)}^{11}} - {x^{11}}}}{{{{\left( {1 + x} \right)}^{11}}}}}}{{\dfrac{{1 + x - x}}{{1 + x}}}}} \right) \\\ \Rightarrow S = {(1 + x)^{10}}\left( {\dfrac{{{{\left( {1 + x} \right)}^{11}} - {x^{11}}}}{{{{(1 + x)}^{10}}}}} \right) \\\ \Rightarrow S = {\left( {1 + x} \right)^{11}} - {x^{11}} \\\

Now coefficient of x7{x^7} is given by

11C7=11!7!(117)! 11!7!(4)! 11×10×9×824 330  11{C_7} = \dfrac{{11!}}{{7!\left( {11 - 7} \right)!}} \\\ \Rightarrow \dfrac{{11!}}{{7!\left( 4 \right)!}} \\\ \Rightarrow \dfrac{{11 \times 10 \times 9 \times 8}}{{24}} \\\ \Rightarrow 330 \\\

So the coefficient of x7{x^7} is 330.

So option D is correct.

Note:

  1. In a geometric progression except for the first term, other terms are obtained by multiplying the previous term with a fixed common ratio.
  2. a,ar,ar2,.....a,ar,a{r^2},..... is a geometric progression.
  3. This common ratio is denoted by r and the first term is denoted by a.
  4. If three positive numbers a, b, c are in G.P. then their geometric mean is b. such that b=acb= \sqrt {ac} .
  5. An arithmetic progression is having a common difference d.
    a,a+d,a+2d....a,a + d,a + 2d.... is an arithmetic progression.