Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The coefficient of x7x^{-7} in the expansion of [ax1bx2]11\left[ax - \frac{1}{bx^{2}}\right]^{11} will be

A

462b5a6\frac{462}{b^5} a^6

B

462a5b6\frac{462 a^5}{b^6}

C

462a5b6\frac{ - 462 a^5}{b^6}

D

462a6b5\frac{ - 462 a^6}{b^5}

Answer

462a5b6\frac{462 a^5}{b^6}

Explanation

Solution

Suppose x7x^{-7} occurs in (r+1)th(r + 1)^{th} term. we have Tr+1=nCrxnrarT_{r + 1} = {^{n}C_{r}} x^{n - r} \, a^r in (x+a)n(x + a)^n. In the given question, n = 1, x = ax, a = 1bx2\frac{- 1}{bx^2} Tr+1=11Cr(ax)11r(1bx2)r\therefore \, T_{r + 1} = {^{11}C_{r}} (ax)^{11 - r} \left( \frac{ - 1}{bx^2} \right)^r =11Cra11rbrx113r(1)r = {^{11}C_r} a^{11 - r} b^{-r} x^{11 - 3r} (-1)^r This term contains x7x^{-7} if 113r=711 - 3r = - 7 r=6\Rightarrow \, r = 6 Therefore, coefficient of x7x^{-7} is 11C6(a)5(1b)6=462b6a5{^{11}C_6 } (a)^5 \left( \frac{ -1}{b} \right)^6 = \frac{462}{b^6} a^5