Question
Mathematics Question on binomial expansion formula
The coefficient of x50 in the binomial expansion of (1+x)1000+x(1+x)999+x2(1+x)998+....+x1000 is:
A
(50)!(950)!(1000)!
B
(49)!(951)!(1000)!
C
(51)!(950)!(1001)!
D
(50)!(951)!(1001)!
Answer
(50)!(951)!(1001)!
Explanation
Solution
Let given expansion be S=(1+x)1000+x(1+x)999+x2(1+x)998+...+...+x1000 Put 1 + x = t S=t1000+xt999+x2(t)998+...+x1000 This is a G.P with common ratio tx S=1−txt1000[1−(tx)1001] =1−1+xx(1+x)1000[1−(1+xx)1001] =(1+x)1001(1+x)1001[(1+x)1001−x1001] =[(1+x)1001−x1001] Now coeff of x50 in above expansion is equal to coeff of x50 in (1+x)1001 which is 1001C50 =50!(951)!(1001)!