Solveeit Logo

Question

Mathematics Question on Binomial theorem

The coefficient of x49x ^{49} in the product (x1)(x2)(x50)\left(x-1\right)\left(x-2\right)\cdots\left(x-50\right) is

A

-2280

B

-1275

C

1275

D

-2250

Answer

-1275

Explanation

Solution

(x1)(x2)(x3)(x50)(x-1)(x-2)(x-3) \ldots(x-50)
=x50(1+2+3++50)x49+(12+23++4950)x48++(1×2×3×4××50)=x^{50}-(1+2+3+\ldots+50) x^{49}+(1 \cdot 2+2 \cdot 3+\ldots+49 \cdot 50) x^{48}+\ldots+(1 \times 2 \times 3 \times 4 \times \ldots \times 50)
\therefore Coefficient of x49=(1+2+3++50)x^{49}=-(1+2+3+\ldots+50)
=[50(50+1)2]=-\left[\frac{50(50+1)}{2}\right]
=25×51=-25 \times 51
=1275=-1275