Solveeit Logo

Question

Mathematics Question on general and middle terms

The coefficient of x301x^{301} in (1+x)500+x(1+x)499+x2(1+x)498++x500(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots \ldots +x^{500} is :

A

500C301{ }^{500} C _{301}

B

501C200{ }^{501} C_{200}

C

3500C300{ }_3{ }^{500} C_{300}

D

501C302{ }^{501} C_{302}

Answer

501C200{ }^{501} C_{200}

Explanation

Solution

(1+x)500+x(1+x)499+x2(1+x)498+…+x500
=(1+x)500⋅{1−1+xx​1−(1+xx​)501​}
=(1+x)500(1+x)501((1+x)501−x501)​⋅(1+x)
=(1+x)501−x501
Coefficient of x301 in (1+x)501−x501 is given by
501C301​=501C200​