Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The coefficient of x3x^3 in the expansion of (x1x)7\left(x -\frac{1}{x}\right)^{7} is :

A

14

B

21

C

28

D

35

Answer

21

Explanation

Solution

Given, (x1x)7\left(x -\frac{1}{x}\right)^{7} and the (r+1)th \left(r+1\right)^{th} term in the
expansion of (x+a)nT(r+1)=nCr(x)nrar\left(x+a\right)^{n} T_{\left(r+1\right)} = \,^{n}C_{r} \left(x\right)^{n-r} a^{r}
(r+1)th\therefore\left(r+1\right)^{th} term in expansion of
(x1x)7=7Cr(x)7r(1x)r\left(x- \frac{1}{x} \right)^{7} = \,^{7}C_{r} \left(x\right)^{7-r} \left(- \frac{1}{x}\right)^{r}
=7Cr(x)72r(1)r=\,^{7}C_{r} \left(x\right)^{7-2r}\left(-1\right)^{r}
Since x3x^{3} occurs in Tr+1T_{r+1}
72r=3r=2\therefore 7-2r =3 \Rightarrow r=2
thus the coefficient of x3=7C2(1)2x^{3} =\,^{7}C_{2} \left(-1\right)^{2}
=7×62×1=21= \frac{7\times6}{2\times1} =21