Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The coefficient of x24x^{24} in the expansion of (1+x2)12(1+x12)(1+x24)\left(1+x^{2}\right)^{12}\left(1+x^{12}\right)\left(1+x^{24}\right) is

A

12C6{ }^{12} C_{6}

B

12C6+2{ }^{12} C_{6}+2

C

12C6+4{ }^{12} C_{6}+4

D

12C6+6{ }^{12} C_{6}+6

Answer

12C6+2{ }^{12} C_{6}+2

Explanation

Solution

Now, (1+x2)12(1+x12+x24+x36)\left(1+x^{2}\right)^{12}\left(1+x^{12}+x^{24}+x^{36}\right)
=[1+12C1(x2)+12C2(x2)2+12C3(x2)3=\left[1+{ }^{12} C_{1}\left(x^{2}\right)+{ }^{12} C_{2}\left(x^{2}\right)^{2}+{ }^{12} C_{3}\left(x^{2}\right)^{3}\right.
+12C4(x2)4+12C5(x2)5+12C6(x2)6+{ }^{12} C_{4}\left(x^{2}\right)^{4}+{ }^{12} C_{5}\left(x^{2}\right)^{5}+{ }^{12} C_{6}\left(x^{2}\right)^{6}
++12C12(x2)12]×(1+x12+x24+x36)\left.+\ldots+{ }^{12} C_{12}\left(x^{2}\right)^{12}\right] \times\left(1+x^{12}+x^{24}+x^{36}\right)
Coefficient of x24=12C6+12C12+1x^{24}={ }^{12} C_{6}+{ }^{12} C_{12}+1
=12C6+2={ }^{12} C_{6}+2