Solveeit Logo

Question

Mathematics Question on general and middle terms

The coefficient of x24x^{24} in the expansion of (1+x2)12(1+x12)(1+x24)(1 + x^2)^{12} (1 + x^{12}) (1 + x^{24}) is

A

12C6^{12}C_6

B

12C6+2^{12}C_6 + 2

C

12C6+4^{12}C_6 + 4

D

12C6+6^{12}C_6 + 6

Answer

12C6+2^{12}C_6 + 2

Explanation

Solution

The correct answer is (B): 12C6+2^{12}C_{6} + 2.
Now , (1+x2)12(1+x12+x24+x36)\left(1+ x^{2}\right)^{12} \left(1 +x^{12} + x^{24} + x^{36}\right)
=[1+12C1(x2)+12C2(x2)3+12C3(x2)3+12C4(x2)4+12(x2)5+12C6(x2)6+....+12C12(x2)12]×(1+x12+x24+x36)= \left[1+ ^{12}C_{1}\left(x^{2}\right) + ^{12}C_{2}\left(x^{2}\right)^{3} + ^{12}C_{3}\left(x^{2}\right)^{3} + ^{12}C_{4}\left(x^{2}\right)^{4} + ^{12}\left(x^{2}\right)_{5} + ^{12}C_{6} \left(x^{2}\right)^{6} +....+ ^{12}C_{12} \left(x^{2}\right)^{12} \right] \times (1 + x^{12} + x^{24} + x^{36})
Coefficient of x24=12C6+12C12+1x^{24} = ^{12}C_{6} + ^{12}C_{12} + 1
=12C6+2=^{12}C_{6} + 2