Solveeit Logo

Question

Mathematics Question on Determinants

The coefficient of x2x^2 in the expansion of the determinant x2x3+1x5+2 x2+3x3+xx3+x4 x+4x3+x523\begin{vmatrix}x^{2}&x^{3}+1&x^{5}+2\\\ x^{2}+3&x^{3}+x&x^{3}+x^{4}\\\ x+4&x^{3}+x^{5}&2^{3}\end{vmatrix} is

A

-10

B

-8

C

-2

D

-6

Answer

-10

Explanation

Solution

For the coefficient of x2x^{2}, on expanding along R1R_{1}, we get
Δ=x2[8x2+8xx62x7x8](x3+1)\Delta=x^{2}\left[8 x^{2}+8 x-x^{6}-2 x^{7}-x^{8}\right]-\left(x^{3}+1\right)
[8x3+24x4x54x34x4]+(x5+2)\left[8 x^{3}+24-x^{4}-x^{5}-4 x^{3}-4 x^{4}\right]+\left(x^{5}+2\right)
[x6+x7+3x3+3x4x3x24x24x]\left[x^{6}+x^{7}+3 x^{3}+3 x^{4}-x^{3}-x^{2}-4 x^{2}-4 x\right]
=8x4+8x3x82x9x108x6=8 x^{4}+8 x^{3}-x^{8}-2 x^{9}-x^{10}-8 x^{6}
24x3+x7+x8+4x6+4x78x324-24 x^{3}+x^{7}+x^{8}+4 x^{6}+4 x^{7}-8 x^{3}-24
+x4+x5+4x3+4x4+x11+x12+x^{4}+x^{5}+4 x^{3}+4 x^{4}+x^{11}+x^{12}
+3x8+3x9x8x74x74x6+2x6+3 x^{8}+3 x^{9}-x^{8}-x^{7}-4 x^{7}-4 x^{6}+2 x^{6}
+2x7+6x3+6x42x32x28x28x+2 x^{7}+6 x^{3}+6 x^{4}-2 x^{3}-2 x^{2}-8 x^{2}-8 x
Coefficient of x2=28=10x^{2}=-2-8=-10