Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The coefficient of x2x^{2} in the expansion of (1+x+x2+x3)10(1 + x + x^{2} + x^{3})^{10} is

A

4242

B

4343

C

4444

D

5555

Answer

5555

Explanation

Solution

The given expansion is,
(1+x+x2+x3)10=[1+x+x2(1+x)]10(1 + x + x^2 + x^3)10 = [1 + x + x^2(1 + x)]^{10}
=[(1+x)(1+x2)]10=(1+x)10(1+x2)10= [(1 + x)(1 + x^2)]^{10} = (1 + x )^{10}(1 + x^2)^{10}
=(1+10C1x+10C2x2+....+10C10x10)=(1 + \,^{10}C_1x + \,^{10}C_2x^2 + ....+ \,^{10}C_{10}x^{10})
(1+10C1x2+10C2x4+....+10C10x20)(1 + \,^{10}C_1x^2 + \,^{10}C_2x^4 + ....+ \,^{10}C_{10} x^{20})
\therefore Coefficient of x2=10C1+10C2=55x^2 = \,^{10}C_1 + \,^{10}C_2 = 55