Solveeit Logo

Question

Question: The coefficient of \({{x}^{17}}\) in the expansion of \(\left( x-1 \right)\left( x-2 \right)\left( x...

The coefficient of x17{{x}^{17}} in the expansion of (x1)(x2)(x3) . . . . . . . . . . . (x18)\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right) is

& \text{A}.-\text{171} \\\ & \text{B}.\text{ 171} \\\ & \text{C}.\text{ 153} \\\ & \text{D}.-\text{153} \\\ \end{aligned}$$
Explanation

Solution

To solve this question, we will first consider (x1) (x2)\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right) and see what is highest power of x in this and then observe similarly that what will be coefficient of x in (x1) (x2)\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right) that can be obtained by putting x = 0 and adding terms of (x1) (x2)\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right). Similarly, we can calculate coefficient of x2{{x}^{2}} in term (x1)(x2)(x3)\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right). Finally, following the same process we will calculate coefficient of x17{{x}^{17}} in (x1)(x2)(x3) . . . . . . . . . . . (x18)\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)

Complete step-by-step answer:
Given, we have (x1)(x2)(x3) . . . . . . . . . . . (x18)\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)
To have a better understanding of the solution, first consider; (x1) (x2)\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right) then expanding (x1) (x2)\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right) by opening the bracket, we get:

& \left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)=x\left( x-2 \right)-1\left( x-2 \right) \\\ & \Rightarrow {{x}^{2}}-2x-x+2 \\\ & \Rightarrow {{x}^{2}}-3x+2\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\\ \end{aligned}$$ So, we observe that highest power of x in $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ is 2 and ${{x}^{1}}$ can be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ and adding them $$\text{Coefficient of }{{x}^{1}}=\left( -1 \right)+\left( -2 \right)=-3$$ which is correct. As we had two terms of $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ multiplied, so highest power of x is 2. Now, consider $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ As the value of $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)={{x}^{2}}-3x+2$ by equation (i) then substituting this value in above we get: $$\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)\left( x-3 \right)=\left( {{x}^{2}}-3x+2 \right)\left( x-3 \right)$$ Opening the bracket to solve further, we get: $$\begin{aligned} & \left( {{x}^{2}}-3x+2 \right)\left( x-3 \right)=x\left( {{x}^{2}}-3x+2 \right)-3\left( {{x}^{2}}-3x+2 \right) \\\ & \Rightarrow {{x}^{3}}-3{{x}^{2}}+2x-3{{x}^{2}}+9x-6 \\\ & \Rightarrow {{x}^{3}}-6{{x}^{2}}+11x-6 \\\ \end{aligned}$$ Therefore, the highest power of x in the expression $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ is 3. This was so as we had three terms $\left( \text{x}-\text{1} \right),\left( \text{x}-\text{2} \right)\text{ and }\left( x-3 \right)$ multiplied, then the coefficient of ${{x}^{2}}$ would be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ and adding them. Similarly, if we multiply $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)\left( x-4 \right)$ then highest power of x would be 4 and coefficient of ${{x}^{3}}$ can be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ and adding them. Similarly, if we multiply $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)\left( x-4 \right)\left( x-5 \right)$ then the highest power of x would be 5. To get the coefficient of ${{x}^{17}}$ we need the adding of terms of $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ and that too by putting x = 0. Also, as we only need coefficient of ${{x}^{17}}$ and not the value of ${{x}^{17}}$ then we can easily obtain this by putting x = 0 in the expression and adding them we get, exact coefficient of ${{x}^{17}}$ $$\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$$ Therefore, substituting x = 0 in above and adding all, we get: $$\begin{aligned} & \left( x-1 \right)+\left( x-2 \right)+\left( x-3 \right)+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+\left( x-18 \right) \\\ & \left( -1 \right)+\left( -2 \right)+\left( -3 \right)+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+\left( -18 \right) \\\ & \left( -1 \right)-2-3-4-\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }-18 \\\ & -\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right) \\\ \end{aligned}$$ This is obtained by taking (-1) common. Now, we have a formula of sum of n term which is given as: $$1+2+3+4+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+n=\dfrac{n\left( n+1 \right)}{2}$$ Substituting n = 18 in above formula to obtain $-\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right)$ we get: $$\begin{aligned} & -\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right)=-\left( \dfrac{18\left( 18+1 \right)}{2} \right) \\\ & \Rightarrow -9\left( 19 \right) \\\ & \Rightarrow -171 \\\ \end{aligned}$$ Therefore, the coefficient of ${{x}^{17}}$ in the expansion of $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ is -171. **So, the correct answer is “Option A”.** **Note:** Another method to solve this question is: We are given $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ then as this equation has maximum power as 18, then sum of roots can be obtained by putting $$\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)=0$$ Therefore, roots are $$x=1,2,3,4,5,6,7,8,9,........18$$ Hence, there are 18 roots. When equation is of the form $a{{x}^{2}}+bx+c$ then formula of sum of roots is $$\Rightarrow \dfrac{-b}{a}=\dfrac{-\text{coefficient of x}}{\text{coefficient of }{{\text{x}}^{2}}}$$ Here, we have 18 degree equation, then sum of roots $$\Rightarrow \dfrac{-\text{coefficient of }{{\text{x}}^{17}}}{\text{coefficient of }{{\text{x}}^{18}}}$$ Clearly, the coefficient of ${{x}^{18}}$ would be 1 as all variable x has coefficient 1. $$1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18=\dfrac{-\text{coefficient of }{{\text{x}}^{17}}}{1}$$ Using $1+2+\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+n=\dfrac{n\left( n+1 \right)}{2}$ in above we get: $$\begin{aligned} & -\text{coefficient of }{{\text{x}}^{17}}=\dfrac{18\left( 18+1 \right)}{2} \\\ & \text{coefficient of }{{\text{x}}^{17}}=-9\times 17 \\\ & \text{coefficient of }{{\text{x}}^{17}}=-171 \\\ \end{aligned}$$ Hence, the coefficient of ${{x}^{17}}$ is -171 which is option A.