Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The coefficient of x1012x^{1012} in the expansion of (1+xn+x253)10(1 + x^n + x^{253})^{10}, (where n \le 22 is any positive integer), is :-

A

1

B

10C4{^{10}C_4}

C

4n

D

253C4{^{253}C_4}

Answer

10C4{^{10}C_4}

Explanation

Solution

Given expansion (1+xn+x253)10(1+ x^n + x^{253})^{10}

Let x1012=(1)a(xn)b.(x253)cx^{1012} = (1)^a (x^n)^b. (x^{253})^c

Here a, b, c, n are all +ve integers and a \le 10, b \le 10, c \le 4, n \le 22, a + b + c = 10

Now bn+253c=1012bn + 253c = 1012 bn=253(4c)\Rightarrow \, bn = 253 (4 - c)

For c < 4 and n \le 22; b > 10,

which is not possible.

\therefore c = 4, b = 0, a =6

x1012=(1)6.(xn)0.(x253)4\therefore \, x^{1012} = (1)^6. (x^n)^0 . (x^{253})^{4}

Hence the coefficient of x1012x^{1012} =10!6!0!4!= \frac{10!}{6! 0! 4!} =10C4= {^{10}C_4}