Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The coefficient of x10x^{10} in the expansion of 1+(1+x)++(1+x)201+\left(1+x\right)+\ldots+\left(1+x\right)^{20} is

A

19C9^{19}C_{9}

B

20C10^{20}C_{10}

C

21C11^{21}C_{11}

D

22C12^{22}C_{12}

Answer

21C11^{21}C_{11}

Explanation

Solution

The correct option is(C): 21C11^{21}C_{11}

The given series is in GP. Hence, its sum
S=\frac{1\left\\{(1+x)^{20+1}-1\right\\}}{(1+x)-1}=\frac{(1+x)^{21}-1}{x}
Therefore, the required coefficient of x10x^{10} in the expansion of (1+x)211x\frac{(1+x)^{21}-1}{x}
== Coefficient of x11x^{11} in the expansion of (1+x)211(1+x)^{21}-1
=21C11={ }^{21} C_{11}