Solveeit Logo

Question

Question: The coefficient of \(\therefore\) in the expansion of \(x > 4\) is....

The coefficient of \therefore in the expansion of

x>4x > 4 is.

A

1/256

B

1/562

C

1/265

D

–1/256

Answer

–1/256

Explanation

Solution

1x+1y=1xy\frac{1}{x} + \frac{1}{y} = \frac{1}{xy}

\Rightarrow x+yxy=1xyx+y=1\frac{x + y}{xy} = \frac{1}{xy}\therefore x + y = 1

x=21/321/3x = 2^{1/3} - 2^{- 1/3}, \Rightarrow

x3=2213.21/3.21/3(21/321/3)x^{3} = 2 - 2^{- 1} - 3.2^{1/3}.2^{- 1/3}(2^{1/3} - 2^{- 1/3}) \Rightarrow

\therefore x3+3x=32x^{3} + 3x = \frac{3}{2}

\therefore

2x3+6x=32x^{3} + 6x = 3

4.9x1=3.(22x+1)4.9^{x - 1} = 3.\sqrt{(2^{2x + 1})}

Coefficient of

32x21=22x+1223^{2x - 2 - 1} = 2^{\frac{2x + 1}{2} - 2}= \Rightarrow

= 32x3=22x323^{2x - 3} = 2^{\frac{2x - 3}{2}}.