Solveeit Logo

Question

Question: The coefficient of \[{{t}^{50}}\] in \[{{\left( 1+{{t}^{2}} \right)}^{25}}\left( 1+{{t}^{25}} \right...

The coefficient of t50{{t}^{50}} in (1+t2)25(1+t25)(1+t40)(1+t45)(1+t47){{\left( 1+{{t}^{2}} \right)}^{25}}\left( 1+{{t}^{25}} \right)\left( 1+{{t}^{40}} \right)\left( 1+{{t}^{45}} \right)\left( 1+{{t}^{47}} \right) is
(A) 1+25C51{{+}^{25}}{{C}_{5}}
(B) 1+25C5+25C71{{+}^{25}}{{C}_{5}}{{+}^{25}}{{C}_{7}}
(C) 1+25C71{{+}^{25}}{{C}_{7}}
(D) none of these

Explanation

Solution

First of all, expand the term (1+t2)25{{\left( 1+{{t}^{2}} \right)}^{25}} using binomial expansion formula, (1+x)n=nC0(1)n(x)0+nC1(1)n1(x)1+nC2(1)n2(x)2+nC3(1)n3(x)3+nC4(1)n4(x)4+{{\left( 1+x \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( 1 \right)}^{n}}{{\left( x \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( 1 \right)}^{n-1}}{{\left( x \right)}^{1}}{{+}^{n}}{{C}_{2}}{{\left( 1 \right)}^{n-2}}{{\left( x \right)}^{2}}{{+}^{n}}{{C}_{3}}{{\left( 1 \right)}^{n-3}}{{\left( x \right)}^{3}}{{+}^{n}}{{C}_{4}}{{\left( 1 \right)}^{n-4}}{{\left( x \right)}^{4}}+
nC5(1)n5(x)5+...................+nCn(1)0(x)n^{n}{{C}_{5}}{{\left( 1 \right)}^{n-5}}{{\left( x \right)}^{5}}+...................{{+}^{n}}{{C}_{n}}{{\left( 1 \right)}^{0}}{{\left( x \right)}^{n}} . Now, transform the expression (1+t2)25(1+t25)(1+t40)(1+t45)(1+t47){{\left( 1+{{t}^{2}} \right)}^{25}}\left( 1+{{t}^{25}} \right)\left( 1+{{t}^{40}} \right)\left( 1+{{t}^{45}} \right)\left( 1+{{t}^{47}} \right) as,
\left\\{ ^{25}{{C}_{0}}{{+}^{25}}{{C}_{1}}\left( {{t}^{2}} \right){{+}^{25}}{{C}_{2}}\left( {{t}^{4}} \right){{+}^{25}}{{C}_{3}}\left( {{t}^{6}} \right){{+}^{25}}{{C}_{4}}\left( {{t}^{8}} \right){{+}^{25}}{{C}_{5}}\left( {{t}^{10}} \right)+...............{{+}^{25}}{{C}_{25}}\left( {{t}^{50}} \right) \right\\}\left( 1+{{t}^{25}} \right)
×(1+t40)(1+t45)(1+t47)\times \left( 1+{{t}^{40}} \right)\left( 1+{{t}^{45}} \right)\left( 1+{{t}^{47}} \right) . The term t50{{t}^{50}}can be obtained by expanding the term (1+t2)25{{\left( 1+{{t}^{2}} \right)}^{25}} and also by multiplying the term t40{{t}^{40}} of (1+t40)\left( 1+{{t}^{40}} \right) with the term 25C5(t10)^{25}{{C}_{5}}\left( {{t}^{10}} \right) of the term \left\\{ ^{25}{{C}_{0}}{{+}^{25}}{{C}_{1}}\left( {{t}^{2}} \right){{+}^{25}}{{C}_{2}}\left( {{t}^{4}} \right){{+}^{25}}{{C}_{3}}\left( {{t}^{6}} \right){{+}^{25}}{{C}_{4}}\left( {{t}^{8}} \right){{+}^{25}}{{C}_{5}}\left( {{t}^{10}} \right)+...............{{+}^{25}}{{C}_{25}}\left( {{t}^{50}} \right) \right\\} . Now, solve it further and get the coefficient of t50{{t}^{50}} .

Complete step by step answer:
According to the question, we have the expression,
(1+t2)25(1+t25)(1+t40)(1+t45)(1+t47){{\left( 1+{{t}^{2}} \right)}^{25}}\left( 1+{{t}^{25}} \right)\left( 1+{{t}^{40}} \right)\left( 1+{{t}^{45}} \right)\left( 1+{{t}^{47}} \right) …………………………………(1)
We have to get the coefficient of t50{{t}^{50}} in the above expression.
From equation (1), there is an expression that has the term (1+t2)25{{\left( 1+{{t}^{2}} \right)}^{25}} . We need to expand the term (1+t2)25{{\left( 1+{{t}^{2}} \right)}^{25}} .
We know the formula for the binomial expansion,
(1+x)n=nC0(1)n(x)0+nC1(1)n1(x)1+nC2(1)n2(x)2+nC3(1)n3(x)3+nC4(1)n4(x)4{{\left( 1+x \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( 1 \right)}^{n}}{{\left( x \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( 1 \right)}^{n-1}}{{\left( x \right)}^{1}}{{+}^{n}}{{C}_{2}}{{\left( 1 \right)}^{n-2}}{{\left( x \right)}^{2}}{{+}^{n}}{{C}_{3}}{{\left( 1 \right)}^{n-3}}{{\left( x \right)}^{3}}{{+}^{n}}{{C}_{4}}{{\left( 1 \right)}^{n-4}}{{\left( x \right)}^{4}}
+nC5(1)n5(x)5+...................+nCn(1)0(x)n{{+}^{n}}{{C}_{5}}{{\left( 1 \right)}^{n-5}}{{\left( x \right)}^{5}}+...................{{+}^{n}}{{C}_{n}}{{\left( 1 \right)}^{0}}{{\left( x \right)}^{n}} ………………………………………(6)
Using the binomial expansion formula shown in equation (6), expanding the term (1+t2)25{{\left( 1+{{t}^{2}} \right)}^{25}} , we get
(1+t2)25=25C0(1)25(t2)0+25C1(1)251(t2)1+25C2(1)252(t2)2+25C3(1)253(t2)3+25C4(1)254(t2)4+{{\left( 1+{{t}^{2}} \right)}^{25}}{{=}^{25}}{{C}_{0}}{{\left( 1 \right)}^{25}}{{\left( {{t}^{2}} \right)}^{0}}{{+}^{25}}{{C}_{1}}{{\left( 1 \right)}^{25-1}}{{\left( {{t}^{2}} \right)}^{1}}{{+}^{25}}{{C}_{2}}{{\left( 1 \right)}^{25-2}}{{\left( {{t}^{2}} \right)}^{2}}{{+}^{25}}{{C}_{3}}{{\left( 1 \right)}^{25-3}}{{\left( {{t}^{2}} \right)}^{3}}{{+}^{25}}{{C}_{4}}{{\left( 1 \right)}^{25-4}}{{\left( {{t}^{2}} \right)}^{4}}+
25C5(1)255(t2)5+...............+25C25(1)0(t2)25^{25}{{C}_{5}}{{\left( 1 \right)}^{25-5}}{{\left( {{t}^{2}} \right)}^{5}}+...............{{+}^{25}}{{C}_{25}}{{\left( 1 \right)}^{0}}{{\left( {{t}^{2}} \right)}^{25}}
(1+t2)25=25C0(1)(t2)0+25C1(1)(t2)1+25C2(1)(t2)2+25C3(1)(t2)3+25C4(1)(t2)4+\Rightarrow {{\left( 1+{{t}^{2}} \right)}^{25}}{{=}^{25}}{{C}_{0}}\left( 1 \right){{\left( {{t}^{2}} \right)}^{0}}{{+}^{25}}{{C}_{1}}\left( 1 \right){{\left( {{t}^{2}} \right)}^{1}}{{+}^{25}}{{C}_{2}}\left( 1 \right){{\left( {{t}^{2}} \right)}^{2}}{{+}^{25}}{{C}_{3}}\left( 1 \right){{\left( {{t}^{2}} \right)}^{3}}{{+}^{25}}{{C}_{4}}\left( 1 \right){{\left( {{t}^{2}} \right)}^{4}}+
25C5(1)(t2)5+...............+25C25(1)0(t2)25^{25}{{C}_{5}}\left( 1 \right){{\left( {{t}^{2}} \right)}^{5}}+...............{{+}^{25}}{{C}_{25}}{{\left( 1 \right)}^{0}}{{\left( {{t}^{2}} \right)}^{25}}
(1+t2)25=25C0+25C1(t2)+25C2(t4)+25C3(t6)+25C4(t8)+25C5(t10)+...............+25C25(t50)\Rightarrow {{\left( 1+{{t}^{2}} \right)}^{25}}{{=}^{25}}{{C}_{0}}{{+}^{25}}{{C}_{1}}\left( {{t}^{2}} \right){{+}^{25}}{{C}_{2}}\left( {{t}^{4}} \right){{+}^{25}}{{C}_{3}}\left( {{t}^{6}} \right){{+}^{25}}{{C}_{4}}\left( {{t}^{8}} \right){{+}^{25}}{{C}_{5}}\left( {{t}^{10}} \right)+...............{{+}^{25}}{{C}_{25}}\left( {{t}^{50}} \right) ………………………………..(7)
Now, putting the value of (1+t2)25{{\left( 1+{{t}^{2}} \right)}^{25}} from equation (7) in equation (1), we get
\left\\{ ^{25}{{C}_{0}}{{+}^{25}}{{C}_{1}}\left( {{t}^{2}} \right){{+}^{25}}{{C}_{2}}\left( {{t}^{4}} \right){{+}^{25}}{{C}_{3}}\left( {{t}^{6}} \right){{+}^{25}}{{C}_{4}}\left( {{t}^{8}} \right){{+}^{25}}{{C}_{5}}\left( {{t}^{10}} \right)+...............{{+}^{25}}{{C}_{25}}\left( {{t}^{50}} \right) \right\\}\left( 1+{{t}^{25}} \right)$$$$\times \left( 1+{{t}^{40}} \right)\left( 1+{{t}^{45}} \right)\left( 1+{{t}^{47}} \right) ………………………………..(8)
We have to get the coefficient of t50{{t}^{50}} .
First of all, we need to find ways to obtain t50{{t}^{50}} from the expression,
\left\\{ ^{25}{{C}_{0}}{{+}^{25}}{{C}_{1}}\left( {{t}^{2}} \right){{+}^{25}}{{C}_{2}}\left( {{t}^{4}} \right){{+}^{25}}{{C}_{3}}\left( {{t}^{6}} \right){{+}^{25}}{{C}_{4}}\left( {{t}^{8}} \right){{+}^{25}}{{C}_{5}}\left( {{t}^{10}} \right)+...............{{+}^{25}}{{C}_{25}}\left( {{t}^{50}} \right) \right\\}\left( 1+{{t}^{25}} \right)
×(1+t40)(1+t45)(1+t47)\times \left( 1+{{t}^{40}} \right)\left( 1+{{t}^{45}} \right)\left( 1+{{t}^{47}} \right)
In the above equation, we have t50{{t}^{50}} in the term \left\\{ ^{25}{{C}_{0}}{{+}^{25}}{{C}_{1}}\left( {{t}^{2}} \right){{+}^{25}}{{C}_{2}}\left( {{t}^{4}} \right){{+}^{25}}{{C}_{3}}\left( {{t}^{6}} \right){{+}^{25}}{{C}_{4}}\left( {{t}^{8}} \right){{+}^{25}}{{C}_{5}}\left( {{t}^{10}} \right)+...............{{+}^{25}}{{C}_{25}}\left( {{t}^{50}} \right) \right\\} .
If we multiply the term t50{{t}^{50}} with the terms t25,t40,t45{{t}^{25}},{{t}^{40}},{{t}^{45}} , and t47{{t}^{47}} , we will get the exponent of t greater than 50. Therefore, to get the term t50{{t}^{50}} we have to multiply the term 25C25(t50)^{25}{{C}_{25}}\left( {{t}^{50}} \right) only with number 1 that is present in the term (1+t25)\left( 1+{{t}^{25}} \right) , (1+t40)\left( 1+{{t}^{40}} \right) , (1+t45)\left( 1+{{t}^{45}} \right) , and (1+t47)\left( 1+{{t}^{47}} \right) of the expression, \left\\{ ^{25}{{C}_{0}}{{+}^{25}}{{C}_{1}}\left( {{t}^{2}} \right){{+}^{25}}{{C}_{2}}\left( {{t}^{4}} \right){{+}^{25}}{{C}_{3}}\left( {{t}^{6}} \right){{+}^{25}}{{C}_{4}}\left( {{t}^{8}} \right){{+}^{25}}{{C}_{5}}\left( {{t}^{10}} \right)+...............{{+}^{25}}{{C}_{25}}\left( {{t}^{50}} \right) \right\\}\left( 1+{{t}^{25}} \right)
×(1+t40)(1+t45)(1+t47)\times \left( 1+{{t}^{40}} \right)\left( 1+{{t}^{45}} \right)\left( 1+{{t}^{47}} \right) and ignore the remaining terms.
In this case, the coefficient of t50{{t}^{50}} is 25C25^{25}{{C}_{25}} ……………………………(9)
The term t50{{t}^{50}} can also be obtained by multiplying the term t40{{t}^{40}} of (1+t40)\left( 1+{{t}^{40}} \right) with the term 25C5(t10)^{25}{{C}_{5}}\left( {{t}^{10}} \right) of \left\\{ ^{25}{{C}_{0}}{{+}^{25}}{{C}_{1}}\left( {{t}^{2}} \right){{+}^{25}}{{C}_{2}}\left( {{t}^{4}} \right){{+}^{25}}{{C}_{3}}\left( {{t}^{6}} \right){{+}^{25}}{{C}_{4}}\left( {{t}^{8}} \right){{+}^{25}}{{C}_{5}}\left( {{t}^{10}} \right)+...............{{+}^{25}}{{C}_{25}}\left( {{t}^{50}} \right) \right\\} .
On multiplying we get, 25C5(t50)^{25}{{C}_{5}}\left( {{t}^{50}} \right) .
In this case the coefficient of t50{{t}^{50}} is 25C5^{25}{{C}_{5}} ………………………………(10)
From equation (9) and equation (10), we have the coefficient of the term t50{{t}^{50}} .
The coefficient of the term t50{{t}^{50}} = 25C25+25C5=1+25C5^{25}{{C}_{25}}{{+}^{25}}{{C}_{5}}=1{{+}^{25}}{{C}_{5}} .
Therefore, the coefficient of the term t50{{t}^{50}} is 1+25C51{{+}^{25}}{{C}_{5}} .

So, the correct answer is “Option A”.

Note: In this question, one might think to simplify the expression (1+t2)25(1+t25)(1+t40)(1+t45)(1+t47){{\left( 1+{{t}^{2}} \right)}^{25}}\left( 1+{{t}^{25}} \right)\left( 1+{{t}^{40}} \right)\left( 1+{{t}^{45}} \right)\left( 1+{{t}^{47}} \right) and then separate the term t50{{t}^{50}} to obtain its coefficient. It is just too complex and next to impossible to multiply each term and simplify the expression with just pen and paper. So, we don’t have to approach this question by this method.