Solveeit Logo

Question

Question: The coefficient of friction between the block m<sub>1</sub> and the inclined plane is µ. If \(\frac...

The coefficient of friction between the block m1 and the inclined plane is µ. If m1m2\frac { m _ { 1 } } { m _ { 2 } } = sin q (shown in figure) then the mass m1 moves downwards with acceleration :

A

µg cosq

B

μm1 m1+m2\frac { \mu \mathrm { m } _ { 1 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } g cosq

C

μm2 m1+m2\frac { - \mu \mathrm { m } _ { 2 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } gcosq

D

μgcosθ\frac { \mu } { g \cos \theta }

Answer

μm2 m1+m2\frac { - \mu \mathrm { m } _ { 2 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } gcosq

Explanation

Solution

m1g–T = m1a ...(1)

T – m2g sin q – µm2g cos q = m2a ...(2)

From (1) + (2)

a = m1gm2gsinθμm2gcosθm1+m2\frac { m _ { 1 } g - m _ { 2 } g \sin \theta - \mu m _ { 2 } g \cos \theta } { m _ { 1 } + m _ { 2 } } = m1m2ggsinθμgcosθ1+m1m2\frac { \frac { m _ { 1 } } { m _ { 2 } } g - g \sin \theta - \mu g \cos \theta } { 1 + \frac { m _ { 1 } } { m _ { 2 } } }