Solveeit Logo

Question

Question: The coefficient of \(\frac{a_{1}}{a_{1} + a_{2}} + \frac{a_{3}}{a_{3} + a_{4}}\) in the expansion of...

The coefficient of a1a1+a2+a3a3+a4\frac{a_{1}}{a_{1} + a_{2}} + \frac{a_{3}}{a_{3} + a_{4}} in the expansion of a2a2+a3\frac{a_{2}}{a_{2} + a_{3}} is.

A

2a3a2+a3\frac{2a_{3}}{a_{2} + a_{3}}

B

(51/2+71/6)642(5^{1/2} + 7^{1/6})^{642}

C

(2+2)4(2 + \sqrt{2})^{4}

D

(183!)+3183(183!) + 3^{183}

Answer

2a3a2+a3\frac{2a_{3}}{a_{2} + a_{3}}

Explanation

Solution

x3x^{3}

(x1x)7(1+x)m(1x)n\left( x - \frac{1}{x} \right)^{7}(1 + x)^{m}(1 - x)^{n}

Now putting x2x^{2}

xmx^{m}(x+1x2)2n,\left( x + \frac{1}{x^{2}} \right)^{2n},

xmx^{m}Coefficient of (2n)!(m)!(2nm)!\frac{(2n)!}{(m)!(2n - m)!}.