Solveeit Logo

Question

Mathematics Question on Binomial theorem

The coefficient of a5b6c7{{a}^{5}}{{b}^{6}}{{c}^{7}} in the expansion of (bc+ca+ab)9{{(bc+ca+ab)}^{9}} is

A

100

B

120

C

720

D

1260

Answer

1260

Explanation

Solution

(bc+ca+ab)9=[bc+a(b+c)]9{{(bc+ca+ab)}^{9}}={{[bc+a(b+c)]}^{9}}
\therefore Coefficient of a5b6c7{{a}^{5}}{{b}^{6}}{{c}^{7}} = coefficient of a5b6c7{{a}^{5}}{{b}^{6}}{{c}^{7}} in 9C5^{9}{{C}_{5}} in (bc)4a5(b+c)5{{(bc)}^{4}}{{a}^{5}}{{(b+c)}^{5}} = coefficient of b2c3{{b}^{2}}{{c}^{3}} in 9C5(b+c)5^{9}{{C}_{5}}{{(b+c)}^{5}} =9C5×5C2=9!5!×4!×5!3!×2!{{=}^{9}}{{C}_{5}}{{\times }^{5}}{{C}_{2}}=\frac{9!}{5!\,\times 4!}\times \frac{5!}{3!\times 2!}
=9×8×7×6×53×2×1×2=1260=\frac{9\times 8\times 7\times 6\times 5}{3\times 2\times 1\times 2}=1260