Solveeit Logo

Question

Question: The coefficient of \((7.995)^{1/3}\) in the following expansion \(|x| < 1\)is....

The coefficient of (7.995)1/3(7.995)^{1/3} in the following expansion x<1|x| < 1is.

A

(2x1+x)n\left( \frac{2x}{1 + x} \right)^{n}

B

(1+x2x)n\left( \frac{1 + x}{2x} \right)^{n}

C

(1x1+x)n\left( \frac{1 - x}{1 + x} \right)^{n}

D

1+n(11x)+n(n+1)2! (11x)2+.....,1 + n\left( 1 - \frac{1}{x} \right) + \frac{n(n + 1)}{2!}\text{ }\left( 1 - \frac{1}{x} \right)^{2} + .....\infty,

Answer

(1x1+x)n\left( \frac{1 - x}{1 + x} \right)^{n}

Explanation

Solution

The given sigma is expansion of

102+3×44+510^{2} + 3 \times 4^{4} + 5.

(2+1)6(21)6=(\sqrt{2} + 1)^{6} - (\sqrt{2} - 1)^{6} =will occur in 70270\sqrt{2}.

1402140\sqrt{2}

∴ Coefficient is – 100C53.