Solveeit Logo

Question

Question: The coefficient of \(- \frac{896}{27}\) in the expansion of \(\frac{5580}{17}\) is....

The coefficient of 89627- \frac{896}{27} in the expansion of 558017\frac{5580}{17} is.

A

rr

B

(r+4)(r + 4)

C

(a+2x)n(a + 2x)^{n}

D

rr

Answer

rr

Explanation

Solution

nn+4<x<n+44\frac{n}{n + 4} < x < \frac{n + 4}{4}

(1+x)2n(1 + x)^{2n}

(n1n,nn1)\left( \frac{n - 1}{n},\frac{n}{n - 1} \right)

Therefore the coefficient of x 4

= (nn+1,n+1n)\left( \frac{n}{n + 1},\frac{n + 1}{n} \right)= (nn+2,n+2n)\left( \frac{n}{n + 2},\frac{n + 2}{n} \right)