Solveeit Logo

Question

Question: The co-ordinates of the point where the line \(\frac{x - 6}{- 1} = \frac{y + 1}{0} = \frac{z + 3}{4...

The co-ordinates of the point where the line

x61=y+10=z+34\frac{x - 6}{- 1} = \frac{y + 1}{0} = \frac{z + 3}{4} meets the plane x+yz=3x + y - z = 3are

A

(2, 1, 0)

B

(7, –1, –7)

C

(1, 2, –6)

D

(5, –1, 1)

Answer

(5, –1, 1)

Explanation

Solution

Point on the line, x61=y+10=z+34=r\frac { x - 6 } { - 1 } = \frac { y + 1 } { 0 } = \frac { z + 3 } { 4 } = r are

(r+6,1,4r3)( - r + 6 , - 1,4 r - 3 ) This will be satisfy plane x+yz=3x + y - z = 3

r+614r+3=35r+5=0\therefore - r + 6 - 1 - 4 r + 3 = 3 \Rightarrow - 5 r + 5 = 0 r=1\Rightarrow r = 1

Required co-ordinates of point (5,1,1)\equiv ( 5 , - 1,1 ).