Solveeit Logo

Question

Question: The co-ordinates of the foot of perpendicular drawn from the origin to the line joining the points (...

The co-ordinates of the foot of perpendicular drawn from the origin to the line joining the points (–9, 4, 5) and (10, 0, –1) will be

A

(– 3, 2, 1)

B

(1, 2, 2)

C

(4, 5, 3)

D

None of these

Answer

None of these

Explanation

Solution

Let AD be perpendicular and D be foot of perpendicular which divide BC in ratio then

D(10λ9λ+1,4λ+1,λ+5λ+1)D \left( \frac { 10 \lambda - 9 } { \lambda + 1 } , \frac { 4 } { \lambda + 1 } , \frac { - \lambda + 5 } { \lambda + 1 } \right) …..(i)

The direction ratio of AD are 10λ9λ+1,4λ+1,λ+5λ+1\frac { 10 \lambda - 9 } { \lambda + 1 } , \frac { 4 } { \lambda + 1 } , \frac { - \lambda + 5 } { \lambda + 1 } and direction ratio of BC are 19, – 4 and – 6.

Since ADBCA D \perp B C

19(10λ9λ+1)4(4λ+1)6(λ+5λ+1)=0\Rightarrow 19 \left( \frac { 10 \lambda - 9 } { \lambda + 1 } \right) - 4 \left( \frac { 4 } { \lambda + 1 } \right) - 6 \left( \frac { - \lambda + 5 } { \lambda + 1 } \right) = 0

λ=3128\Rightarrow \lambda = \frac { 31 } { 28 } .

Hence on putting the value of λ\lambda in (i), we get required foot of the perpendicular i.e., (5859,11259,10959)\left( \frac { 58 } { 59 } , \frac { 112 } { 59 } , \frac { 109 } { 59 } \right).

Trick: The line passing through these points is x+919=y44=z56\frac { x + 9 } { 19 } = \frac { y - 4 } { - 4 } = \frac { z - 5 } { - 6 } Now co-ordinates of the foot lie on this line, so they must satisfy the given line. But here no point satisfies the line, hence answer is (4).