Solveeit Logo

Question

Question: The co-ordinates of a point which is equidistant from the points \(( 0,0,0 ) , ( a , 0,0 ) , ( 0 , ...

The co-ordinates of a point which is equidistant from the points (0,0,0),(a,0,0),(0,b,0)( 0,0,0 ) , ( a , 0,0 ) , ( 0 , b , 0 ) and (0,0,c)( 0,0 , c ) are given by

A

(a2,b2,c2)\left( \frac { a } { 2 } , \frac { b } { 2 } , \frac { c } { 2 } \right)

B

(a2,b2,c2)\left( - \frac { a } { 2 } , - \frac { b } { 2 } , \frac { c } { 2 } \right)

C

(a2,b2,c2)\left( \frac { a } { 2 } , - \frac { b } { 2 } , - \frac { c } { 2 } \right)

D

(a2,b2,c2)\left( - \frac { a } { 2 } , \frac { b } { 2 } , - \frac { c } { 2 } \right)

Answer

(a2,b2,c2)\left( \frac { a } { 2 } , \frac { b } { 2 } , \frac { c } { 2 } \right)

Explanation

Solution

Let point be (x,y,z)( x , y , z ) then x2+y2+z2x ^ { 2 } + y ^ { 2 } + z ^ { 2 }

= (xa)2+y2+z2=x2+(yb)2+z2=x2+y2+(zc)2( x - a ) ^ { 2 } + y ^ { 2 } + z ^ { 2 } = x ^ { 2 } + ( y - b ) ^ { 2 } + z ^ { 2 } = x ^ { 2 } + y ^ { 2 } + ( z - c ) ^ { 2 }

Therefore x=a2,y=b2x = \frac { a } { 2 } , y = \frac { b } { 2 } and z=c2z = \frac { c } { 2 } .