Solveeit Logo

Question

Question: The co-ordinate of the point dividing internally the line joining the points (4, –2) and (8, 6) in t...

The co-ordinate of the point dividing internally the line joining the points (4, –2) and (8, 6) in the ratio 7: 5 will be

A

(16, 18)

B

(18, 16)

C

(193,83)\left( \frac{19}{3},\frac{8}{3} \right)

D

(83,193)\left( \frac{8}{3},\frac{19}{3} \right)

Answer

(193,83)\left( \frac{19}{3},\frac{8}{3} \right)

Explanation

Solution

Let point (x, y) divides the line internally.

Then x=m1x2+m2x1m1+m2x = \frac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}}=7(8)+5(4)12=193\frac{7(8) + 5(4)}{12} = \frac{19}{3}, y=m1y2+m2y1m1+m2y = \frac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}

=7(6)+5(2)12=83\frac{7(6) + 5( - 2)}{12} = \frac{8}{3}

Then x=m1x2+m2x1m1+m2x = \frac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}}=7(8)+5(4)12=193\frac{7(8) + 5(4)}{12} = \frac{19}{3}, y=m1y2+m2y1m1+m2y = \frac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}

=7(6)+5(2)12=83\frac{7(6) + 5( - 2)}{12} = \frac{8}{3}