Solveeit Logo

Question

Question: The circular measure of two angles of a triangle are \(\dfrac{1}{2}\) and \(\dfrac{1}{3}\) respectiv...

The circular measure of two angles of a triangle are 12\dfrac{1}{2} and 13\dfrac{1}{3} respectively, what is the number of degrees in the third angle?

Explanation

Solution

By the help of the theorem stating that the sum of the interior angle of a triangle is equal to 180{{180}^{\circ }} we will find the third angle. Also, we will use the formula which is given by (π)c=180{{\left( \pi \right)}^{c}}={{180}^{\circ }} to solve the question. This can also be written as (1)c=(180π){{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} after dividing the equation by π\pi .

Complete step-by-step answer:

In the question we are given the two angles of a triangle which are 12\dfrac{1}{2} and 13\dfrac{1}{3}. As we are not directly given in what form we have 12\dfrac{1}{2} and 13\dfrac{1}{3}. Therefore, we will consider them as radians. Thus we have (12)c{{\left( \dfrac{1}{2} \right)}^{c}} and (13)c{{\left( \dfrac{1}{3} \right)}^{c}}. Now, we are given the two angles out of three therefore, we will consider the third angle as x degree. As we know that the sum of the interior angle of a triangle is equal to 180{{180}^{\circ }}. Therefore, we have

(12)c+(13)c+(x)=180...(i){{\left( \dfrac{1}{2} \right)}^{c}}+{{\left( \dfrac{1}{3} \right)}^{c}}+{{\left( x \right)}^{\circ }}={{180}^{\circ }}...(i)

Now, we will first convert (12)c{{\left( \dfrac{1}{2} \right)}^{c}} into degrees. This can be done by the formula given by (π)c=180{{\left( \pi \right)}^{c}}={{180}^{\circ }} or, (1)c=(180π){{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}. We can write (12)c{{\left( \dfrac{1}{2} \right)}^{c}} as (12)c=12×(1)c{{\left( \dfrac{1}{2} \right)}^{c}}=\dfrac{1}{2}\times {{\left( 1 \right)}^{c}}. By substituting (1)c=(180π){{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} we will get

(12)c=12×(1)c{{\left( \dfrac{1}{2} \right)}^{c}}=\dfrac{1}{2}\times {{\left( 1 \right)}^{c}}

(12)c=12×(180π)\Rightarrow {{\left( \dfrac{1}{2} \right)}^{c}}=\dfrac{1}{2}\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }}

(12)c=(12×180π)\Rightarrow {{\left( \dfrac{1}{2} \right)}^{c}}={{\left( \dfrac{1}{2}\times \dfrac{180}{\pi } \right)}^{\circ }}

(12)c=(11×90π)\Rightarrow {{\left( \dfrac{1}{2} \right)}^{c}}={{\left( \dfrac{1}{1}\times \dfrac{90}{\pi } \right)}^{\circ }}

(12)c=(90π)\Rightarrow {{\left( \dfrac{1}{2} \right)}^{c}}={{\left( \dfrac{90}{\pi } \right)}^{\circ }}

And now we will first convert (13)c{{\left( \dfrac{1}{3} \right)}^{c}} into degrees. This can be done by the formula given by (π)c=180{{\left( \pi \right)}^{c}}={{180}^{\circ }} or, (1)c=(180π){{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}. We can write (13)c{{\left( \dfrac{1}{3} \right)}^{c}} as (13)c=13×(1)c{{\left( \dfrac{1}{3} \right)}^{c}}=\dfrac{1}{3}\times {{\left( 1 \right)}^{c}}. By substituting (1)c=(180π){{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} we will get

(13)c=13×(1)c{{\left( \dfrac{1}{3} \right)}^{c}}=\dfrac{1}{3}\times {{\left( 1 \right)}^{c}}

(13)c=13×(180π)\Rightarrow {{\left( \dfrac{1}{3} \right)}^{c}}=\dfrac{1}{3}\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }}

(13)c=(13×180π)\Rightarrow {{\left( \dfrac{1}{3} \right)}^{c}}={{\left( \dfrac{1}{3}\times \dfrac{180}{\pi } \right)}^{\circ }}

(13)c=(11×60π)\Rightarrow {{\left( \dfrac{1}{3} \right)}^{c}}={{\left( \dfrac{1}{1}\times \dfrac{60}{\pi } \right)}^{\circ }}

(13)c=(60π)\Rightarrow {{\left( \dfrac{1}{3} \right)}^{c}}={{\left( \dfrac{60}{\pi } \right)}^{\circ }}

Now, we will substitute the value of (12)c=(90π){{\left( \dfrac{1}{2} \right)}^{c}}={{\left( \dfrac{90}{\pi } \right)}^{\circ }} and (13)c=(60π){{\left( \dfrac{1}{3} \right)}^{c}}={{\left( \dfrac{60}{\pi } \right)}^{\circ }} in equation (i). Thus, we have

(12)c+(13)c+(x)=180{{\left( \dfrac{1}{2} \right)}^{c}}+{{\left( \dfrac{1}{3} \right)}^{c}}+{{\left( x \right)}^{\circ }}={{180}^{\circ }}

(90π)+(60π)+(x)=180\Rightarrow {{\left( \dfrac{90}{\pi } \right)}^{\circ }}+{{\left( \dfrac{60}{\pi } \right)}^{\circ }}+{{\left( x \right)}^{\circ }}={{180}^{\circ }}

(90π+60π+x)=180\Rightarrow {{\left( \dfrac{90}{\pi }+\dfrac{60}{\pi }+x \right)}^{\circ }}={{180}^{\circ }}

(90+60+xππ)=180\Rightarrow {{\left( \dfrac{90+60+x\pi }{\pi } \right)}^{\circ }}={{180}^{\circ }}

90+60+xππ=180\Rightarrow \dfrac{90+60+x\pi }{\pi }=180

150+xπ=180π\Rightarrow 150+x\pi =180\pi

xπ=180π150\Rightarrow x\pi =180\pi -150

x=180ππ150π\Rightarrow x=\dfrac{180\pi }{\pi }-\dfrac{150}{\pi }

x=180150π\Rightarrow x=180-\dfrac{150}{\pi }

Now, we will put the value of π=3.142\pi =3.142 in order to solve the problem further. So, now we get

x=180150πx=180-\dfrac{150}{\pi }

x=1801503.142\Rightarrow x=180-\dfrac{150}{3.142}

x=18047.74\Rightarrow x=180-47.74

x=132.26\Rightarrow x=132.26

Hence, the third angle is x=132.26x={{132.26}^{\circ }}.

Note: While substituting π=180\pi ={{180}^{\circ }} we will mind that we are not placing this value in the formula but to solve the problem further. Always try to write formulas in a number or a decimal rather than a fraction. Sometimes we are not given whether we are given radians or degrees. So, we will consider them as radians only.