Solveeit Logo

Question

Question: The circles \({{x}^{2}}+{{y}^{2}}\)=4 and \({{x}^{2}}+{{y}^{2}}-4\lambda x+9=0\) have exactly two co...

The circles x2+y2{{x}^{2}}+{{y}^{2}}=4 and x2+y24λx+9=0{{x}^{2}}+{{y}^{2}}-4\lambda x+9=0 have exactly two common tangents if λ\lambda equals
(a) 8
(b) 2
(c) 12
(d) -112

Explanation

Solution

Hint: For two circles to have exactly two common tangents, they should intersect each other at two points. Use the fact that two circles intersect each other at two points of the distance between their centres is less than the sum of the radii of the two circles and greater than the difference of the radii of the two circles, i.e. r1r2<C1C2<r1+r2\left| {{r}_{1}}-{{r}_{2}} \right|<{{C}_{1}}{{C}_{2}}<{{r}_{1}}+{{r}_{2}}. Use the fact that the radius of a circle x2+y2+2gx+2fy+c=0{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0 is given by r=g2+f2cr=\sqrt{{{g}^{2}}+{{f}^{2}}-c}. Hence form an inequation in λ\lambda . Hence find which of the options is correct

Complete step-by-step solution -
We know that the radius of the circle x2+y2+2gx+2fy+c=0{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0 is given by r=g2+f2cr=\sqrt{{{g}^{2}}+{{f}^{2}}-c} and the centre is given by C(g,f)C\equiv \left( -g,-f \right)
Consider the circle S1:x2+y2=4{{S}_{1}}:{{x}^{2}}+{{y}^{2}}=4
Here g = f = 0, c= -4
Hence the centre of the circle S1{{S}_{1}} is given by C1(0,0){{C}_{1}}\equiv \left( 0,0 \right)
The radius of the circle S1{{S}_{1}} is given by r1=g2+f2c=02+02(4)=2{{r}_{1}}=\sqrt{{{g}^{2}}+{{f}^{2}}-c}=\sqrt{{{0}^{2}}+{{0}^{2}}-\left( -4 \right)}=2
Consider the circle x2+y24λx+9=0{{x}^{2}}+{{y}^{2}}-4\lambda x+9=0
Here g=2λ,f=0,c=9g=-2\lambda ,f=0,c=9
Hence the centre of the circle S2{{S}_{2}} is given by C2(2λ,0){{C}_{2}}\equiv \left( 2\lambda ,0 \right)
The radius of the circle S2{{S}_{2}} is given by r2=g2+f2c=4λ29{{r}_{2}}=\sqrt{{{g}^{2}}+{{f}^{2}}-c}=\sqrt{4{{\lambda }^{2}}-9}
The radius of the circle should be real.
Hence, we have
4λ29>0 λ294>0 (λ32)(λ+32)>0 λ(,32)(32,) (i) \begin{aligned} & 4{{\lambda }^{2}}-9>0 \\\ & \Rightarrow {{\lambda }^{2}}-\dfrac{9}{4}>0 \\\ & \Rightarrow \left( \lambda -\dfrac{3}{2} \right)\left( \lambda +\dfrac{3}{2} \right)>0 \\\ & \Rightarrow \lambda \in \left( -\infty ,\dfrac{-3}{2} \right)\bigcup \left( \dfrac{3}{2},\infty \right)\text{ }\left( i \right) \\\ \end{aligned}
Now since the circles have only two common tangents, they must intersect at two points.
Hence, we have
r1r2<C1C2<r1+r2\left| {{r}_{1}}-{{r}_{2}} \right|<{{C}_{1}}{{C}_{2}}<{{r}_{1}}+{{r}_{2}}
Now, we have
C1C2=(2λ0)2+(00)2=2λ{{C}_{1}}{{C}_{2}}=\sqrt{{{\left( 2\lambda -0 \right)}^{2}}+{{\left( 0-0 \right)}^{2}}}=2\left| \lambda \right|
From the inequation r1r2<C1C2\left| {{r}_{1}}-{{r}_{2}} \right|<{{C}_{1}}{{C}_{2}}, we have
4λ292<2λ\left| \sqrt{4{{\lambda }^{2}}-9}-2 \right|<2\left| \lambda \right|
Since both LHS and RHS are non-negative, squaring will not change the sense of the inequality sign.
Squaring both sides, we get
4λ29+444λ29<4λ2 44λ295<0 44λ29>5 \begin{aligned} & 4{{\lambda }^{2}}-9+4-4\sqrt{4{{\lambda }^{2}}-9}<4{{\lambda }^{2}} \\\ & \Rightarrow -4\sqrt{4{{\lambda }^{2}}-9}-5<0 \\\ & \Rightarrow 4\sqrt{4{{\lambda }^{2}}-9}>-5 \\\ \end{aligned}
This inequality is true for all possible values of λ\lambda since the square root of a term is non-negative.
From the inequation C1C2<r1+r2{{C}_{1}}{{C}_{2}}<\left| {{r}_{1}}+{{r}_{2}} \right|, we have
2λ<4λ29+22\left| \lambda \right|<\sqrt{4{{\lambda }^{2}}-9}+2
Since both LHS and RHS are non-negative, squaring will not change the sense of the inequality sign.
Squaring both sides, we get
4λ2<4λ29+4+44λ29 44λ29>5 \begin{aligned} & 4{{\lambda }^{2}}<4{{\lambda }^{2}}-9+4+4\sqrt{4{{\lambda }^{2}}-9} \\\ & \Rightarrow 4\sqrt{4{{\lambda }^{2}}-9}>5 \\\ \end{aligned}
Squaring both sides again, we get
16(4λ29)>25 4λ29>2516 4λ2>25+14416=16916 λ2>16964 (λ138)(λ+138)>0 λ(,138)(138,) (ii) \begin{aligned} & 16\left( 4{{\lambda }^{2}}-9 \right)>25 \\\ & \Rightarrow 4{{\lambda }^{2}}-9>\dfrac{25}{16} \\\ & \Rightarrow 4{{\lambda }^{2}}>\dfrac{25+144}{16}=\dfrac{169}{16} \\\ & \Rightarrow {{\lambda }^{2}}>\dfrac{169}{64} \\\ & \Rightarrow \left( \lambda -\dfrac{13}{8} \right)\left( \lambda +\dfrac{13}{8} \right)>0 \\\ & \Rightarrow \lambda \in \left( -\infty ,\dfrac{-13}{8} \right)\bigcup \left( \dfrac{13}{8},\infty \right)\text{ }\left( ii \right) \\\ \end{aligned}
From (i) and (ii), we have
λ(,138)(138,)\lambda \in \left( -\infty ,\dfrac{-13}{8} \right)\bigcup \left( \dfrac{13}{8},\infty \right)
Clearly all of the options [p],[q],[r] and [s] are in this range.

Note: To ease your understanding, here’s a plot on the number line of the possible values of λ\lambda that we found out :

Here, A and B represent 138-\dfrac{13}{8} and +138+\dfrac{13}{8} respectively. The values of λ\lambda lie on the side where the absolute of the values are >+138+\dfrac{13}{8} .
Here are the circles and their tangents with each value of λ\lambda as given in the options :
When λ\lambda = 8 :

When λ\lambda = 2:

When λ\lambda = 12 :

When λ\lambda = -112 :