Solveeit Logo

Question

Question: The chord through (2, 1) to the circle x<sup>2</sup> – 2x + y<sup>2</sup> –2y + 1 = 0 are bisected a...

The chord through (2, 1) to the circle x2 – 2x + y2 –2y + 1 = 0 are bisected at the point (α,12)\left( \alpha , \frac { 1 } { 2 } \right) then the value of a is-

A

12\frac { 1 } { 2 }

B

1

C

0

D

32\frac { 3 } { 2 }

Answer

32\frac { 3 } { 2 }

Explanation

Solution

Equation of chord T = S1

Ž (a –1) x – y2\frac { \mathrm { y } } { 2 } + 12\frac { 1 } { 2 }– a = 4α28α+14\frac { 4 \alpha ^ { 2 } - 8 \alpha + 1 } { 4 }

Ž 4(a –1) x – 2y + 1 + 4a – 4a2 = 0

This passes through (2, 1) so 8 (a – 1) – 2 + 1 + 4a –4a2 = 0

Ž (2a –3)2 = 0 Ž a = 3/2