Solveeit Logo

Question

Question: The chord joining two points \({\theta _1}{\text{ and }}{\theta _2}\)on the ellipse \(\dfrac{{{x^2}}...

The chord joining two points θ1 and θ2{\theta _1}{\text{ and }}{\theta _2}on the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 such that tanθ1tanθ2=a2b2\tan {\theta _1}\tan {\theta _2} = - \dfrac{{{a^2}}}{{{b^2}}} will subtend a right angle at
(a) focus (b) center (c) end of the major axis (d) end of the minor axis  (a){\text{ focus}} \\\ (b){\text{ center}} \\\ (c){\text{ end of the major axis}} \\\ (d){\text{ end of the minor axis}} \\\

Explanation

Solution

Hint: In this question suppose two points θ1{\theta _1} and θ2{\theta _2} such that θ1=(acosθ1,bsinθ1){\theta _1} = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right) and θ2=(acosθ2,bsinθ2){\theta _2} = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)through which the chord passes. Then use the concept of slope of line passing through two given points to find the slope of Oθ1 and Oθ2O{\theta _1}{\text{ and O}}{\theta _2} where O is the origin. Use the concept that if two lines are perpendicular then their slopes are related as m1×m2=1{m_1} \times {m_2} = - 1.

Complete step-by-step answer:

The chord joining two points (θ1,θ2)\left( {{\theta _1},{\theta _2}} \right) on the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 is shown above.
As we know that the ellipse is having a center (O) = (0, 0) is also shown in the figure.
Let us suppose the point θ1=(acosθ1,bsinθ1){\theta _1} = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right) and θ2=(acosθ2,bsinθ2){\theta _2} = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right) is also shown in the figure.
Now as we know that the slope between two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given as
Slope (m) = y2y1x2x1\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}
So find out the slopes of (Oθ1)\left( {O{\theta _1}} \right) and (Oθ2)\left( {O{\theta _2}} \right).
Let O = (x1,y1)(x_1, y_1) = (0, 0)
θ1=(x2,y2)=(acosθ1,bsinθ1){\theta _1} = \left( {{x_2},{y_2}} \right) = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)
θ2=(x3,y3)=(acosθ2,bsinθ2){\theta _2} = \left( {{x_3},{y_3}} \right) = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)
So let the slope of (0θ1)\left( {0{\theta _1}} \right) be m1.
m1=y2y1x2x1=bsinθ10acosθ10=batanθ1\Rightarrow {m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \dfrac{{b\sin {\theta _1} - 0}}{{a\cos {\theta _1} - 0}} = \dfrac{b}{a}\tan {\theta _1}
Now let the slope of (Oθ2)\left( {O{\theta _2}} \right) be m2.
m1=y3y1x3x1=bsinθ20acosθ20=batanθ2\Rightarrow {m_1} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}} = \dfrac{{b\sin {\theta _2} - 0}}{{a\cos {\theta _2} - 0}} = \dfrac{b}{a}\tan {\theta _2}
Now multiply the slopes we have
m1×m2=batanθ1×batanθ2=b2a2tanθ1tanθ2\Rightarrow {m_1} \times {m_2} = \dfrac{b}{a}\tan {\theta _1} \times \dfrac{b}{a}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2}........................ (1)
Now it is given that
tanθ1tanθ2=a2b2\tan {\theta _1}\tan {\theta _2} = - \dfrac{{{a^2}}}{{{b^2}}}
Now substitute this value in equation (1) we have,
m1×m2=b2a2tanθ1tanθ2=b2a2×a2b2=1\Rightarrow {m_1} \times {m_2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{ - {a^2}}}{{{b^2}}} = - 1
So multiplication of slopes is (-1) which is the condition of the right angle.
Therefore the chord joining two points (θ1,θ2)\left( {{\theta _1},{\theta _2}} \right) on the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 will subtend a right angle at origin or center.
Hence option (B) is correct.

Note: The center of the given ellipse that is x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 is (0, 0) that is the origin that’s why option (c) is correct. The equation of shifted ellipse or the ellipse whose center is not at origin is given by (xp)2a2+(yq)2b2=1\dfrac{{{{\left( {x - p} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - q} \right)}^2}}}{{{b^2}}} = 1 here the center is at (p, q).