Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The chord joining the points (5,5)(5, 5) and (11,227)(11, 227) on the curve y=3x211x15y =3x^{2}-11x-15 is parallel to tangent at a point on the curve. Then the abscissa of the point is

A

-4

B

4

C

-8

D

8

Answer

8

Explanation

Solution

Let the required point be P(x1,y1)P\left(x_{1}, y_{1}\right).
The equation of the given curve is y=3x211x15y=3 x^{2}-11 x-15
dydx=6x11\Rightarrow \frac{d y}{d x}=6 x-11
(dydx)(x1,y1)=6x111\Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=6 x_{1}-11
Since, the tangent at PP is parallel to the line joining (5,5)(5,5) and (11,227)(11,227)
\therefore Slope of the tangent at P=P= Slope of the line joining (5,5)(5,5) and (11,227)(11,227) (dydx)(x1,y1)=2275115\Rightarrow \left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{227-5}{11-5}
6x111=2226\Rightarrow 6 \,x_{1}-11=\frac{222}{6}
6x111=37\Rightarrow 6 \,x_{1}-11=37
6x1=48x1=8\Rightarrow 6 \,x_{1}=48 \Rightarrow x_{1}=8