Solveeit Logo

Question

Question: The chlorate ion can be disproportionate in basic solution according to reaction, \( 2ClO_{3}^{-}...

The chlorate ion can be disproportionate in basic solution according to reaction,
2ClO3  ClO2 + ClO42ClO_{3}^{-}\text{ }\rightleftharpoons \text{ }ClO_{2}^{-}\text{ + }ClO_{4}^{-}
What is the equilibrium concentration of perchlorate ions from a solution initially at 0.1 M in chlorate ions at 298 K?
Given that: EClO4 !!!! ClO3OE_{ClO_{4}^{-}\text{ }\\!\\!|\\!\\!\text{ }ClO_{3}^{-}}^{O} = 0.36 V and EClO3 !!!! ClO2OE_{ClO_{3}^{-}\text{ }\\!\\!|\\!\\!\text{ }ClO_{2}^{-}}^{O} = 0.33V at 298 K.
(A) 0.019M
(B) 0.024M
(C) 0.1M
(D) 0.19M

Explanation

Solution

The disproportionation of chlorate ion ( ClO3 ClO_{3}^{-}\text{ } ) forms Chlorite (  ClO2\text{ }ClO_{2}^{-} )and perchlorate (  ClO4\text{ }ClO_{4}^{-} ) ions. To find the equilibrium concentration we will use the Nernst equation first and then calculate the equilibrium constant. ClO3 ClO_{3}^{-}\text{ } is oxidized to form  ClO4\text{ }ClO_{4}^{-} and it is reduced to form  ClO2\text{ }ClO_{2}^{-} .

Complete Step By Step Answer:
We’ll first see the oxidation of ClO3 ClO_{3}^{-}\text{ } : It loses electrons to form perchlorate ions.
(i) ClO3 (aq) + H2O(l)  ClO4(aq) + 2H+(aq)  + 2eClO_{3}^{-}{{\text{ }}_{\left( aq \right)}}\text{ + }{{\text{H}}_{2}}{{O}_{\left( l \right)}}\text{ }\to \text{ }ClO{{_{4}^{-}}_{\left( aq \right)}}\text{ + 2}{{\text{H}}^{+}}_{_{\left( aq \right)}\text{ }}\text{ + 2}{{\text{e}}^{-}}
Now, let’s see the reduction of ClO3 ClO_{3}^{-}\text{ } It gains the electrons to form chlorite ions.
(ii) ClO3 (aq)+ 2e+ 2H+(aq)  2ClO2(aq) + H2O(l)ClO_{3}^{-}{{\text{ }}_{\left( aq \right)}}\text{+ 2}{{\text{e}}^{-}}\text{+ 2}{{\text{H}}^{+}}_{_{\left( aq \right)}\text{ }}\to \text{ 2}ClO{{_{2}^{-}}_{\left( aq \right)}}\text{ + }{{\text{H}}_{2}}{{O}_{\left( l \right)}}
Adding the equation (i) and (ii) we get the resultant disproportionation equation as,
2ClO3(aq)  ClO2(aq) + ClO4(aq)2ClO{{_{3}^{-}}_{\left( aq \right)}}\text{ }\rightleftharpoons \text{ }ClO{{_{2}^{-}}_{_{\left( aq \right)}}}\text{ + }ClO{{_{4}^{-}}_{_{\left( aq \right)}}}

Emf of the anode| EClO4 !!!! ClO3OE_{ClO_{4}^{-}\text{ }\\!\\!|\\!\\!\text{ }ClO_{3}^{-}}^{O} = 0.36V
---|---
Emf of the cathode.| EClO3 !!!! ClO2OE_{ClO_{3}^{-}\text{ }\\!\\!|\\!\\!\text{ }ClO_{2}^{-}}^{O} = 0.33V

We know the EMF of the cell,
Ecello = Ecathodeo - Eanodeo\Rightarrow E_{cell}^{o}\text{ = E}_{cathode}^{o}\text{ - E}_{anode}^{o}
= (0.33 - 0.36) V=\text{ }(0.33\text{ - 0}\text{.36) V}
= - 0.03 V=\text{ - 0}\text{.03 V}
Now, using Nernst equation,
EMF = Ecello - 0.059n log K\Rightarrow EMF\text{ = E}_{cell}^{o}\text{ - }\dfrac{0.059}{n}\text{ log K}
But the equation is in equilibrium so EMF will be zero.
Substituting 0 for EMF in the above equation we get,
0 = Ecello - 0.059n log K0\text{ = E}_{cell}^{o}\text{ - }\dfrac{0.059}{n}\text{ log K}
Bringing 0.059nlogK\dfrac{0.059}{n}\log \text{K} to the LHS, we get
0.059n log K = Ecello\Rightarrow \dfrac{0.059}{n}\text{ log K = E}_{cell}^{o}
Arrange the above equation with EcelloE_{cell}^{o} in the LHS,
Ecello = 0.059n log K\Rightarrow E_{cell}^{o}\text{ = }\dfrac{0.059}{n}\text{ log K}
Ecello = RTnF ln K\Rightarrow E_{cell}^{o}\text{ = }\dfrac{RT}{nF}\text{ ln K}
n=2 as there are two ions formed and Ecello = -0.03 VE_{cell}^{o}\text{ = -0}\text{.03 V}
Putting the above values in the equation we get,
0.03 = RT2F ln K\Rightarrow -0.03\text{ = }\dfrac{RT}{2F}\text{ ln K}
We get RTF = 0.06We\text{ get }\dfrac{RT}{F}\text{ = 0}\text{.06} ,
 - 0.03 = 0.062 ln K\therefore \text{ - 0}\text{.03 = }\dfrac{0.06}{2}\text{ ln K}
 K = 0.1\therefore \text{ K = 0}\text{.1}
Now, assume that the concentration of each reactant and product is,
2ClO3  ClO2 + ClO42ClO_{3}^{-}\text{ }\rightleftharpoons \text{ }ClO_{2}^{-}\text{ + }ClO_{4}^{-}

2ClO3 2ClO_{3}^{-}\text{ }ClO2ClO_{2}^{-}ClO4ClO_{4}^{-}
0.1 - 2x 0.1\text{ - 2x }xx

Thus, K = concentration of productsconcentration of reactantsK\text{ }=\text{ }\dfrac{concentration\text{ }of\text{ }products}{concentration\text{ of reactants}}
K = x2(0.12x)2\Rightarrow K\text{ = }\dfrac{{{x}^{2}}}{{{(0.1-2x)}^{2}}}
0.1 = x2(0.12x)2\Rightarrow \text{0}\text{.1 = }\dfrac{{{x}^{2}}}{{{(0.1-2x)}^{2}}}
110 = x2(0.12x)2\Rightarrow \dfrac{1}{10}\text{ = }\dfrac{{{x}^{2}}}{{{(0.1-2x)}^{2}}}
By cross multiplying,
(0.12x)2 = 10x2{{(0.1-2x)}^{2}}\text{ = 10}{{x}^{2}}
Calculating the square of (0.1 - 2x)2{{\left( 0.1\text{ - 2x} \right)}^{2}} by using the identity (ab)2 = a2 - 2ab + b2{{\left( a-b \right)}^{2}}\text{ = }{{\text{a}}^{2}}\text{ - 2ab + }{{\text{b}}^{2}}
0.01 - 0.4x + 4x2 = 10x20.01\text{ - 0}\text{.4x + 4}{{\text{x}}^{2}}\text{ = 10}{{\text{x}}^{2}}
3.16x = 0.1 - 2x\Rightarrow 3.16x\text{ = 0}\text{.1 - 2x}
5.16x = 0.1\Rightarrow 5.16x\text{ }=\text{ }0.1
x = 0.15.16\Rightarrow x\text{ = }\dfrac{0.1}{5.16}
x = 0.0193 M\therefore x\text{ = 0}\text{.0193 M}
Final answer is Option A= 0.019 M.

Note:
Calculating the Nernst equation of various concentrations of cells will help you to understand the equation questions easily. Also, always keep in mind that if the compound loses an electron, reduction occurs, and if it gains electrons oxidation takes place. Simultaneous loss and gain of electrons takes place in the redox reactions.