Solveeit Logo

Question

Question: The charge on a parallel plate capacitor is varying as \(q = q _ { 0 } \sin 2 \pi n t\) . The plate...

The charge on a parallel plate capacitor is varying as q=q0sin2πntq = q _ { 0 } \sin 2 \pi n t . The plates are very large and close together. Neglecting the edge effects, the displacement current through the capacitor is

A

qε0A\frac { q } { \varepsilon _ { 0 } A }

B

q0ε0sin2πnt\frac { q _ { 0 } } { \varepsilon _ { 0 } } \sin 2 \pi n t

C

2πnq0cos2πnt2 \pi n q _ { 0 } \cos 2 \pi n t

D

2πnq0ε0cos2πnt\frac { 2 \pi n q _ { 0 } } { \varepsilon _ { 0 } } \cos 2 \pi n t

Answer

2πnq0cos2πnt2 \pi n q _ { 0 } \cos 2 \pi n t

Explanation

Solution

ID=dqdt=ddtq0sin2πnt=2πnq0cos2πntI _ { D } = \frac { d q } { d t } = \frac { d } { d t } q _ { 0 } \sin 2 \pi n t = 2 \pi n q _ { 0 } \cos 2 \pi n t