Solveeit Logo

Question

Question: The charge balance equation of species in \(0.100\)M acetic acid solution is given by A. \(\left[ ...

The charge balance equation of species in 0.1000.100M acetic acid solution is given by
A. [H + ]=[OH]\left[ {{{\text{H}}^{\text{ + }}}} \right]\, = \,\left[ {{\text{O}}{{\text{H}}^ - }} \right]
B.[H + ]=[CH3COO]\left[ {{{\text{H}}^{\text{ + }}}} \right]\, = \,\left[ {{\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }} \right]
C. [H + ]=[OH]+[CH3COO]\left[ {{{\text{H}}^{\text{ + }}}} \right]\, = \,\left[ {{\text{O}}{{\text{H}}^ - }} \right] + \,\left[ {{\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }} \right]
D. 2[H + ]=[OH]+[CH3COO]2\left[ {{{\text{H}}^{\text{ + }}}} \right]\, = \,\left[ {{\text{O}}{{\text{H}}^ - }} \right] + \,\left[ {{\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }} \right]

Explanation

Solution

To solve this first calculate the number of moles of KI{\text{KI}} in 200 ml200{\text{ ml}}, 100 ml100{\text{ ml}} and 0.5 litre0.5{\text{ litre}} of 0.1 M0.1{\text{ M}} solution of KI{\text{KI}}. Then calculate the number of moles of the given species that react with the calculated moles of KI{\text{KI}}. This can be solved by using the simple definition of molarity.

Complete step by step answer:
We are given that 0.1 M0.1{\text{ M}} solution of KI{\text{KI}} reacts with excess of H2SO4{{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} and KIO3{\text{KI}}{{\text{O}}_{\text{3}}} solutions, according to the equation as follows:
5I+IO3+6H+3I2+3H2O5{{\text{I}}^ - } + {\text{IO}}_3^ - + 6{{\text{H}}^ + } \to {\text{3}}{{\text{I}}_2} + {\text{3}}{{\text{H}}_2}{\text{O}}
The reaction can be written as follows:
5KI+KIO3+3H2SO43I2+3K2SO4 + 3H2O5{\text{KI}} + {\text{KI}}{{\text{O}}_3} + 3{{\text{H}}_2}{\text{S}}{{\text{O}}_4} \to {\text{3}}{{\text{I}}_2} + 3{{\text{K}}_2}{\text{S}}{{\text{O}}_4}{\text{ + 3}}{{\text{H}}_2}{\text{O}}
The given equation is a balanced chemical equation.
200 ml200{\text{ ml}} of KI{\text{KI}} solution reacts with 0.004 mol0.004{\text{ mol}} KIO3{\text{KI}}{{\text{O}}_{\text{3}}}
We know that the molarity of a solution is the number of moles of solute per litre of solution. Thus,
Molarity(M)=Number of moles(mol)Volume of solution(litre){\text{Molarity}}\left( {\text{M}} \right) = \dfrac{{{\text{Number of moles}}\left( {{\text{mol}}} \right)}}{{{\text{Volume of solution}}\left( {{\text{litre}}} \right)}}
Thus,
Number of moles(mol)=Molarity(M)×Volume of solution(litre){\text{Number of moles}}\left( {{\text{mol}}} \right) = {\text{Molarity}}\left( {\text{M}} \right) \times {\text{Volume of solution}}\left( {{\text{litre}}} \right)
Thus, the number of moles of KI{\text{KI}} in 200 ml=200×103 litre200{\text{ ml}} = 200 \times {10^{ - 3}}{\text{ litre}} of 0.1 M0.1{\text{ M}} solution of KI{\text{KI}} are:
Number of moles of KI=0.1 M×200×103 litre=0.02 mol{\text{Number of moles of KI}} = {\text{0}}{\text{.1 M}} \times 200 \times {10^{ - 3}}{\text{ litre}} = 0.02{\text{ mol}}
Thus, 200 ml200{\text{ ml}} of 0.1 M0.1{\text{ M}} solution of KI{\text{KI}} corresponds to 0.02 mol0.02{\text{ mol}} of KI{\text{KI}}.
From the reaction, we can say that 5 mol KI5{\text{ mol KI}} reacts with 1 mol KIO31{\text{ mol KI}}{{\text{O}}_3}. Thus, the moles of KIO3{\text{KI}}{{\text{O}}_3} that react with 0.02 mol0.02{\text{ mol}} of KI{\text{KI}} are:
Moles of KIO3=0.02 mol KI×1 mol KIO35 mol KI=0.004 mol KIO3{\text{Moles of KI}}{{\text{O}}_3} = 0.02{\text{ mol KI}} \times \dfrac{{1{\text{ mol KI}}{{\text{O}}_3}}}{{5{\text{ mol KI}}}} = 0.004{\text{ mol KI}}{{\text{O}}_3}
Thus, the statement ‘200 ml200{\text{ ml}} of KI{\text{KI}} solution reacts with 0.004 mol0.004{\text{ mol}} KIO3{\text{KI}}{{\text{O}}_{\text{3}}}’ is correct.
Thus, option (A) is correct.
100 ml100{\text{ ml}} of KI{\text{KI}} solution reacts with 0.006 mol0.006{\text{ mol}} of H2SO4{{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}:
We know that the molarity of a solution is the number of moles of solute per litre of solution. Thus,
Molarity(M)=Number of moles(mol)Volume of solution(litre){\text{Molarity}}\left( {\text{M}} \right) = \dfrac{{{\text{Number of moles}}\left( {{\text{mol}}} \right)}}{{{\text{Volume of solution}}\left( {{\text{litre}}} \right)}}
Thus,
Number of moles(mol)=Molarity(M)×Volume of solution(litre){\text{Number of moles}}\left( {{\text{mol}}} \right) = {\text{Molarity}}\left( {\text{M}} \right) \times {\text{Volume of solution}}\left( {{\text{litre}}} \right)
Thus, the number of moles of KI{\text{KI}} in 100 ml=100×103 litre100{\text{ ml}} = 100 \times {10^{ - 3}}{\text{ litre}} of 0.1 M0.1{\text{ M}} solution of KI{\text{KI}} are:
Number of moles of KI=0.1 M×100×103 litre=0.01 mol{\text{Number of moles of KI}} = {\text{0}}{\text{.1 M}} \times 100 \times {10^{ - 3}}{\text{ litre}} = 0.01{\text{ mol}}
Thus, 100 ml100{\text{ ml}} of 0.1 M0.1{\text{ M}} solution of KI{\text{KI}} corresponds to 0.01 mol0.01{\text{ mol}} of KI{\text{KI}}.
From the reaction, we can say that 5 mol KI5{\text{ mol KI}} react with 3 mol H2SO43{\text{ mol }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4}. Thus, the moles of H2SO4{{\text{H}}_2}{\text{S}}{{\text{O}}_4} that react with 0.01 mol0.01{\text{ mol}} of KI{\text{KI}} are:
Moles of H2SO4=0.01 mol KI×3 mol H2SO45 mol KI=0.006 mol H2SO4{\text{Moles of }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4} = 0.01{\text{ mol KI}} \times \dfrac{{{\text{3 mol }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4}}}{{5{\text{ mol KI}}}} = 0.006{\text{ mol }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4}
Thus, the statement ‘100 ml100{\text{ ml}} of KI{\text{KI}} solution reacts with 0.006 mol0.006{\text{ mol}} of H2SO4{{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}’ is correct.
Thus, option (B) is correct.
0.5 litre0.5{\text{ litre}} of KI{\text{KI}} solution reacts with 0.005 mol0.005{\text{ mol}} of I2{{\text{I}}_{\text{2}}}:
We know that the molarity of a solution is the number of moles of solute per litre of solution. Thus,
Molarity(M)=Number of moles(mol)Volume of solution(litre){\text{Molarity}}\left( {\text{M}} \right) = \dfrac{{{\text{Number of moles}}\left( {{\text{mol}}} \right)}}{{{\text{Volume of solution}}\left( {{\text{litre}}} \right)}}
Thus,
Number of moles(mol)=Molarity(M)×Volume of solution(litre){\text{Number of moles}}\left( {{\text{mol}}} \right) = {\text{Molarity}}\left( {\text{M}} \right) \times {\text{Volume of solution}}\left( {{\text{litre}}} \right)
Thus, the number of moles of KI{\text{KI}} in 0.5 litre0.5{\text{ litre}} of 0.1 M0.1{\text{ M}} solution of KI{\text{KI}} are:
Number of moles of KI=0.1 M×0.5 litre=0.05 mol{\text{Number of moles of KI}} = {\text{0}}{\text{.1 M}} \times 0.5{\text{ litre}} = 0.05{\text{ mol}}
Thus, 0.5 litre0.5{\text{ litre}} of 0.1 M0.1{\text{ M}} solution of KI{\text{KI}} corresponds to 0.05 mol0.05{\text{ mol}} of KI{\text{KI}}.
From the reaction, we can say that 5 mol KI5{\text{ mol KI}} produce 3 mol I23{\text{ mol }}{{\text{I}}_2}. Thus, the moles of I2{{\text{I}}_2} that are produced by with 0.05 mol0.05{\text{ mol}} of KI{\text{KI}} are:
Moles of I2=0.05 mol KI×3 mol I25 mol KI=0.03 mol I2{\text{Moles of }}{{\text{I}}_2} = 0.05{\text{ mol KI}} \times \dfrac{{{\text{3 mol }}{{\text{I}}_2}}}{{5{\text{ mol KI}}}} = 0.03{\text{ mol }}{{\text{I}}_2}
Thus, the statement ‘0.5 litre0.5{\text{ litre}} of KI{\text{KI}} solution reacts with 0.005 mol0.005{\text{ mol}} of I2{{\text{I}}_{\text{2}}}’ is incorrect.
Thus, option (C) is not correct.
Equivalent weight of KIO3{\text{KI}}{{\text{O}}_{\text{3}}} is equal to (Molecular weight5)\left( {\dfrac{{{\text{Molecular weight}}}}{5}} \right):
The equation that gives the relationship between the equivalent weight and the molecular weight is,
Equivalent weight=Molecular weightValency factor{\text{Equivalent weight}} = \dfrac{{{\text{Molecular weight}}}}{{{\text{Valency factor}}}}
The valency factor is the change in oxidation state.
We are given the reaction,
5KI+KIO3+3H2SO43I2+3K2SO4 + 3H2O5{\text{KI}} + {\text{KI}}{{\text{O}}_3} + 3{{\text{H}}_2}{\text{S}}{{\text{O}}_4} \to {\text{3}}{{\text{I}}_2} + 3{{\text{K}}_2}{\text{S}}{{\text{O}}_4}{\text{ + 3}}{{\text{H}}_2}{\text{O}}
In the reaction, KIO3{\text{KI}}{{\text{O}}_3} is reduced to I2{{\text{I}}_2}. The oxidation state of iodine i.e. I{\text{I}} in KIO3{\text{KI}}{{\text{O}}_3} is +5 + 5 and in I2{{\text{I}}_2} is 0. Thus, the change in oxidation state is 5. Thus, the valency factor for KIO3{\text{KI}}{{\text{O}}_3} is 5.
Thus,
Equivalent weight of KIO3=Molecular weight of KIO35{\text{Equivalent weight of KI}}{{\text{O}}_3} = \dfrac{{{\text{Molecular weight of KI}}{{\text{O}}_3}}}{{\text{5}}}
Thus, the statement ‘equivalent weight of KIO3{\text{KI}}{{\text{O}}_{\text{3}}} is equal to (Molecular weight5)\left( {\dfrac{{{\text{Molecular weight}}}}{5}} \right)’ is correct.

Thus, the correct option is A,B,D.

Note: Remember that the equation for the reaction must be balanced. Unbalanced chemical equations can lead to incorrect answers. Also, remember to calculate the correct valency factor. The equivalent weight is the ratio of molecular weight to the valency factor. For acids, valency factor is the number of replaceable hydrogen ions and for bases, valency factor is the number of replaceable hydroxide ions.